+This section considers functions $f: \Bool^n \rightarrow \Bool^n $
+issued from an hypercube where an Hamiltonian path has been removed.
+A specific random walk in this modified hypercube is first
+introduced. We further detail
+a theoretical study on the length of the path
+which is sufficient to follow to get a uniform distribution.
+
+
+
+
+
+First of all, let $\pi$, $\mu$ be two distributions on $\Bool^n$. The total
+variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is
+defined by
+$$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ It is known that
+$$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^n}|\pi(X)-\mu(X)|.$$ Moreover, if
+$\nu$ is a distribution on $\Bool^n$, one has
+$$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$
+
+Let $P$ be the matrix of a Markov chain on $\Bool^n$. $P(x,\cdot)$ is the
+distribution induced by the $x$-th row of $P$. If the Markov chain induced by
+$P$ has a stationary distribution $\pi$, then we define
+$$d(t)=\max_{X\in\Bool^n}\tv{P^t(X,\cdot)-\pi}.$$
+It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il
+un intérêt dans la preuve ensuite.}
+
+
+
+%and
+% $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
+% One can prove that \JFc{Ou cela a-t-il été fait?}
+% $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
+
+
+
+Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^n$ valued random
+variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping
+ time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq
+(\Bool^n)^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$.
+In other words, the event $\{\tau = t \}$ only depends on the values of
+$(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$.
+