-\documentclass{article}
-%\usepackage{prentcsmacro}
-%\sloppy
-\usepackage[a4paper]{geometry}
-\geometry{hmargin=3cm, vmargin=3cm }
-
-\usepackage[latin1]{inputenc}
-\usepackage[T1]{fontenc}
-\usepackage[english]{babel}
-\usepackage{amsmath,amssymb,latexsym,eufrak,euscript}
-\usepackage{subfigure,pstricks,pst-node,pst-coil}
-
-
-\usepackage{url,tikz}
-\usepackage{pgflibrarysnakes}
-
-\usepackage{multicol}
-
-\usetikzlibrary{arrows}
-\usetikzlibrary{automata}
-\usetikzlibrary{snakes}
-\usetikzlibrary{shapes}
-
-%% \setlength{\oddsidemargin}{15mm}
-%% \setlength{\evensidemargin}{15mm} \setlength{\textwidth}{140mm}
-%% \setlength{\textheight}{219mm} \setlength{\topmargin}{5mm}
-\newtheorem{theorem}{Theorem}
-%\newtheorem{definition}[theorem]{Definition}
-% %\newtheorem{defis}[thm]{D\'efinitions}
- \newtheorem{example}[theorem]{Example}
-% %\newtheorem{Exes}[thm]{Exemples}
-\newtheorem{lemma}[theorem]{Lemma}
-\newtheorem{proposition}[theorem]{Proposition}
-\newtheorem{construction}[theorem]{Construction}
-\newtheorem{corollary}[theorem]{Corollary}
-% \newtheorem{algor}[thm]{Algorithm}
-%\newtheorem{propdef}[thm]{Proposition-D\'efinition}
-\newcommand{\mlabel}[1]{\label{#1}\marginpar{\fbox{#1}}}
-\newcommand{\flsup}[1]{\stackrel{#1}{\longrightarrow}}
-
-\newcommand{\stirlingtwo}[2]{\genfrac{\lbrace}{\rbrace}{0pt}{}{#1}{#2}}
-\newcommand{\stirlingone}[2]{\genfrac{\lbrack}{\rbrack}{0pt}{}{#1}{#2}}
-
-\newenvironment{algo}
-{ \vspace{1em}
-\begin{algor}\mbox
-\newline \vspace{-0.1em}
-\begin{quote}\begin{rm}}
-{\end{rm}\end{quote}\end{algor}\vspace{-1.5em}\vspace{2em}}
-%\null \hfill $\diamondsuit$ \par\medskip \vspace{1em}}
-
-\newenvironment{exe}
-{\begin{example}\rm }
-{\end{example}
-%\vspace*{-1.5em}
-%\null \hfill $\triangledown$ \par\medskip}
-%\null \hfill $\triangledown$ \par\medskip \vspace{1em}}
-}
-
-
-\newenvironment{proof}
-{ \noindent {\sc Proof.\/} }
-{\null \hfill $\Box$ \par\medskip \vspace{1em}}
-
-
-
-\newcommand {\tv}[1] {\lVert #1 \rVert_{\rm TV}}
-\def \top {1.8}
-\def \topt {2.3}
-\def \P {\mathbb{P}}
-\def \ov {\overline}
-\def \ts {\tau_{\rm stop}}
-\begin{document}
-\label{firstpage}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Mathematical Backgroung}
-
-
-
-Let $\pi$, $\mu$ be two distribution on a same set $\Omega$. The total
-variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is
-defined by
-$$\tv{\pi-\mu}=\max_{A\subset \Omega} |\pi(A)-\mu(A)|.$$ It is known that
-$$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Omega}|\pi(x)-\mu(x)|.$$ Moreover, if
-$\nu$ is a distribution on $\Omega$, one has
-$$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$
-
-Let $P$ be the matrix of a markov chain on $\Omega$. $P(x,\cdot)$ is the
-distribution induced by the $x$-th row of $P$. If the markov chain induced by
-$P$ has a stationary distribution $\pi$, then we define
-$$d(t)=\max_{x\in\Omega}\tv{P^t(x,\cdot)-\pi},$$
-and
-
-$$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
-One can prove that
-
-$$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
-
-It is known that $d(t+1)\leq d(t)$.