]> AND Private Git Repository - rairo15.git/blobdiff - stopping.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modifications de la partie stopping time et calcul de la borne dans les exp
[rairo15.git] / stopping.tex
index faab606dd0dc97fd112af62443d322ca9c1d906b..3a07e06a67fc073968d7355d2bff8196d485c29f 100644 (file)
@@ -20,23 +20,23 @@ the probability function $p$ defined on the set of edges as follows:
 $$
 p(e) \left\{
 \begin{array}{ll}
-= \frac{1}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\
-= \frac{1}{3} \textrm{ otherwise.}
+= \frac{2}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\
+= \frac{1}{6} \textrm{ otherwise.}
 \end{array}
 \right.  
 $$
 The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is 
 \[
-P=\dfrac{1}{3} \left(
+P=\dfrac{1}{6} \left(
 \begin{array}{llllllll}
-1&1&1&0&0&0&0&0 \\
-1&1&0&0&0&1&0&0 \\
-0&0&1&1&0&0&1&0 \\
-0&1&1&1&0&0&0&0 \\
-1&0&0&0&1&0&1&0 \\
-0&0&0&0&1&1&0&1 \\
-0&0&0&0&1&0&1&1 \\
-0&0&0&1&0&1&0&1 
+4&1&1&0&0&0&0&0 \\
+1&4&0&0&0&1&0&0 \\
+0&0&4&1&0&0&1&0 \\
+0&1&1&4&0&0&0&0 \\
+1&0&0&0&4&0&1&0 \\
+0&0&0&0&1&4&0&1 \\
+0&0&0&0&1&0&4&1 \\
+0&0&0&1&0&1&0&4 
 \end{array}
 \right)
 \]
@@ -81,7 +81,9 @@ A specific random walk in this modified hypercube is first
 introduced. We further detail
 a theoretical study on the length of the path 
 which is sufficient to follow to get a uniform distribution.
+Notice that for a general references on Markov chains
+see~\cite{LevinPeresWilmer2006}
+, and particularly Chapter~5 on stopping times.  
 
 
 
@@ -102,21 +104,21 @@ $$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$
 and
 
 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
-One can prove that
+One can prove that
 
-$$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
+$$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
 
 
 
 
 % It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il 
-% un intérêt dans la preuve ensuite.}
+% un intérêt dans la preuve ensuite.}
 
 
 
 %and
 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
-% One can prove that \JFc{Ou cela a-t-il été fait?}
+% One can prove that \JFc{Ou cela a-t-il été fait?}
 % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
 
 
@@ -138,11 +140,14 @@ randomized stopping time (possibly depending on the starting position $X$),
 such that  the distribution of $X_\tau$ is $\pi$:
 $$\P_X(X_\tau=Y)=\pi(Y).$$
 
+A stopping time $\tau$ is a {\emph strong stationary time} if $X_{\tau}$ is
+independent of $\tau$. 
+
 
-\begin{Theo}
+\begin{thrm}
 If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}}
 \P_X(\tau > t)$.
-\end{Theo}
+\end{thrm}
 
 
 %Let $\Bool^n$ be the set of words of length $n$. 
@@ -165,14 +170,16 @@ has been removed.
 
 We define the Markov matrix $P_h$ for each line $X$ and 
 each column $Y$  as follows:
-$$\left\{
+\begin{equation}
+\left\{
 \begin{array}{ll}
-P_h(X,X)=\frac{1}{{\mathsf{N}}} & \\
+P_h(X,X)=\frac{1}{2}+\frac{1}{2{\mathsf{N}}} & \\
 P_h(X,Y)=0 & \textrm{if  $(X,Y)\notin E_h$}\\
-P_h(X,Y)=\frac{1}{{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$}
+P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$}
 \end{array}
 \right.
-$$ 
+\label{eq:Markov:rairo}
+\end{equation} 
 
 We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function 
 such that for any $X \in \Bool^{\mathsf{N}} $, 
@@ -180,9 +187,9 @@ $(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$.
 The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$,
 $\ov{h}(\ov{h}(X))\neq X$. 
 
-\begin{Lemma}\label{lm:h}
+\begin{lmm}\label{lm:h}
 If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$.
-\end{Lemma}
+\end{lmm}
 
 \begin{proof}
 Let $\ov{h}$ be bijective.
@@ -197,14 +204,13 @@ This contradicts the square-freeness of $\ov{h}$.
 \end{proof}
 
 Let $Z$ be a random variable that is uniformly distributed over
-$\llbracket 1, {\mathsf{N}}$.
+$\llbracket 1, {\mathsf{N}} \rrbracket \times \Bool$.
 For $X\in \Bool^{\mathsf{N}}$, we
-define, with $Z=i$,  
+define, with $Z=(i,b)$,  
 $$
 \left\{
 \begin{array}{ll}
-%f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\
-f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if $i\neq h(X)$},\\
+f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\
 f(X,Z)=X& \text{otherwise.} 
 \end{array}\right.
 $$
@@ -216,14 +222,14 @@ $$
 
 
 
-%%%%%%%%%%%%%%%%%%%%%%%%%%%ù
+%%%%%%%%%%%%%%%%%%%%%%%%%%%ù
 %\section{Stopping time}
 
 An integer $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ is said {\it fair} 
 at time $t$ if there
-exists $0\leq j <t$ such that $Z_{j+1}=\ell$ and $h(X_j)\neq \ell$.
-In other words, there exist a date $j$ before $t$ where
-the random variable $Z$ is  $l$ 
+exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$.
+In other words, there exist a date $j$ before $t$ where 
+the first element of the random variable $Z$ is exactly $l$ 
 (\textit{i.e.}, $l$ is the strategy at date $j$) 
 and where the configuration $X_j$ allows to traverse the edge $l$.  
  
@@ -232,17 +238,16 @@ are fair. The integer $\ts$ is a randomized stopping time for
 the Markov chain $(X_t)$.
 
 
-\begin{Lemma}
+\begin{lmm}
 The integer $\ts$ is a strong stationary time.
-\end{Lemma}
+\end{lmm}
 
 \begin{proof}
 Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable
-$Z_{\tau_\ell}$ is of the form $\ell$ %with $\delta\in\{0,1\}$ and
-% such that 
-% $b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability
-% $\frac{1}{2}$.
-Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th
+$Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and
+such that 
+$b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability
+$\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th
 bit of $X_{\tau_\ell}$ 
 is $0$ or $1$ with the same probability ($\frac{1}{2}$).
 
@@ -252,57 +257,59 @@ the same probability. Therefore,  for $t\geq \tau_\ell$, the
 $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the
 lemma.\end{proof}
 
-\begin{Theo} \label{prop:stop}
+\begin{thrm} \label{prop:stop}
 If $\ov{h}$ is bijective and square-free, then
-$E[\ts]\leq {\mathsf{N}}^2+ (\mathsf{N}+2)(\ln(\mathsf{N})+2)$. 
-\end{Theo}
+$E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$. 
+\end{thrm}
 
 For each $X\in \Bool^{\mathsf{N}}$ and $\ell\in\llbracket 1,{\mathsf{N}}\rrbracket$, 
 let $S_{X,\ell}$ be the
 random variable that counts the number of steps 
 from $X$ until we reach a configuration where
 $\ell$ is fair. More formally
-$$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=\ell \text{ and } X_0=X\}.$$
-
- We denote by
-$$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$
+$$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$
 
+%  We denote by
+% $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$
 
-\begin{Lemma}\label{prop:lambda}
-If $\ov{h}$ is a square-free bijective function, then the inequality 
-$E[\lambda_h]\leq 2{\mathsf{N}}^2$ is established.
 
-\end{Lemma}
+\begin{lmm}\label{prop:lambda}
+Let $\ov{h}$ is a square-free bijective function. Then
+for all $X$ and 
+all $\ell$, 
+the inequality 
+$E[S_{X,\ell}]\leq 8{\mathsf{N}}^2$ is established.
+\end{lmm}
 
 \begin{proof}
-For every $X$, every $\ell$, one has $\P(S_{X,\ell}\leq 2)\geq
-\frac{1}{{\mathsf{N}}^2}$. 
+For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq
+\frac{1}{4{\mathsf{N}}^2}$. 
 Let $X_0= X$.
 Indeed, 
 \begin{itemize}
 \item if $h(X)\neq \ell$, then
-$\P(S_{X,\ell}=1)=\frac{1}{{\mathsf{N}}}\geq \frac{1}{{\mathsf{N}}^2}$. 
+$\P(S_{X,\ell}=1)=\frac{1}{2{\mathsf{N}}}\geq \frac{1}{4{\mathsf{N}}^2}$. 
 \item otherwise, $h(X)=\ell$, then
 $\P(S_{X,\ell}=1)=0$.
-But in this case, intutively, it is possible to move
-from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{N}$). And in
+But in this case, intuitively, it is possible to move
+from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in
 $\ov{h}^{-1}(X)$ the $l$-th bit can be switched. 
 More formally,
 since $\ov{h}$ is square-free,
 $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows
 that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have
-$P(X_1=\ov{h}^{-1}(X))=\frac{1}{{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h},
+$P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h},
 $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid
-X_1=\ov{h}^{-1}(X))=\frac{1}{{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq
-\frac{1}{{\mathsf{N}}^2}$.
+X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq
+\frac{1}{4{\mathsf{N}}^2}$.
 \end{itemize}
 
 
 
 
-Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{{\mathsf{N}}^2}$. By induction, one
+Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{4{\mathsf{N}}^2}$. By induction, one
 has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq
-\left(1-\frac{1}{{\mathsf{N}}^2}\right)^i$.
+\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i$.
  Moreover,
 since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that
 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$
@@ -311,63 +318,52 @@ $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq
 \P(S_{X,\ell}\geq 1)+\P(S_{X,\ell}\geq 2)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$
 Consequently,
 $$E[S_{X,\ell}]\leq 1+1+2
-\sum_{i=1}^{+\infty}\left(1-\frac{1}{{\mathsf{N}}^2}\right)^i=2+2({\mathsf{N}}^2-1)=2{\mathsf{N}}^2,$$
+\sum_{i=1}^{+\infty}\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i=2+2(4{\mathsf{N}}^2-1)=8{\mathsf{N}}^2,$$
 which concludes the proof.
 \end{proof}
 
-Let $\ts^\prime$ be the first time that there are exactly ${\mathsf{N}}-1$ fair
-elements. 
+Let $\ts^\prime$ be the time used to get all the bits but one fair.
 
-\begin{Lemma}\label{lm:stopprime}
-One has $E[\ts^\prime]\leq (\mathsf{N}+2)(\ln(\mathsf{N})+2)$.
-\end{Lemma}
+\begin{lmm}\label{lm:stopprime}
+One has $E[\ts^\prime]\leq 4{\mathsf{N}} \ln ({\mathsf{N}}+1).$
+\end{lmm}
 
 \begin{proof}
-This is a classical  Coupon Collector's like problem. Let $W_i$ 
-be the time to obtain the $i$-th fair bit
-after $i-1$ fair bits have been obtained.
-One has $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}}W_i$.
-
-At position $X$ with $i-1$ fair bits,
-we  do not obtain a new fair if $Z$ is one of the $i-1$ already fair bits
-or if $Z$ is a new fair bit but $h(X)$ is $Z$.  
-This occures with probability 
-$p 
-= \frac{i-1}{{\mathsf{N}}} + \frac{n-i+1}{\mathsf{N}}.\frac{1}{\mathsf{N}}
-=\frac{i(\mathsf{N}-1) +1}{\mathsf{N^2}}
-$. 
-The random variable $W_i$ has a geometric distribution 
-\textit{i.e.}, $P(W_i = k) = p^{k-1}.(1-p)$ and 
-$E(W_i) = \frac{\mathsf{N^2}}{i(\mathsf{N}-1) +1}$.
-Therefore
-$$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}}E[W_i]
-=\frac{\mathsf{N^2}}{\mathsf{N}(\mathsf{N}-1) +1}  + \sum_{i=1}^{{\mathsf{N}}-1}E[W_i].$$
-
-A simple study of the function $\mathsf{N} \mapsto \frac{\mathsf{N^2}}{\mathsf{N}(\mathsf{N}-1) +1}$ shows that it is bounded by $\frac{4}{3} \leq 2$.
-For the second term, we successively have 
-$$
-\sum_{i=1}^{{\mathsf{N}}-1}E[W_i] 
-= \mathsf{N}^2\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{i(\mathsf{N}-1) +1} 
-\leq \mathsf{N}^2\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{i(\mathsf{N}-1)} 
-\leq \frac{\mathsf{N}^2}{\mathsf{N}-1}\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{i} 
-\leq (\mathsf{N}+2)\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{i} 
-$$
+This is a classical  Coupon Collector's like problem. Let $W_i$ be the
+random variable counting the number of moves done in the Markov chain while
+we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}-1}W_i$.
+ But when we are at position $X$ with $i-1$ fair bits, the probability of
+ obtaining a new fair bit is either $1-\frac{i-1}{{\mathsf{N}}}$ if $h(X)$ is fair,
+ or  $1-\frac{i-2}{{\mathsf{N}}}$ if $h(X)$ is not fair. 
+
+Therefore,
+$\P (W_i=k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}}.$
+Consequently, we have $\P(W_i\geq k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}-i+1}.$
+It follows that $E[W_i]=\sum_{k=1}^{+\infty} \P (W_i\geq k)\leq {\mathsf{N}} \frac{{\mathsf{N}}-i+2}{({\mathsf{N}}-i+1)^2}\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$.
+
 
 
-It is well known that 
-$\sum_{i=1}^{{\mathsf{N}}-1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}-1)$.
-It follows that
-$2+(\mathsf{N}+2)\sum_{i=1}^{{\mathsf{N}}-1}\frac{1}{i}
-\leq 
-2+(\mathsf{N}+2)(\ln(\mathsf{N}-1)+1)
-\leq 
-(\mathsf{N}+2)(\ln(\mathsf{N})+2)$.
+It follows that 
+$E[W_i]\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$. Therefore
+$$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}-1}E[W_i]\leq 
+4{\mathsf{N}}\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{{\mathsf{N}}-i+2}=
+4{\mathsf{N}}\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}.$$
+
+But $\sum_{i=1}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1)$. It follows that
+$1+\frac{1}{2}+\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1).$
+Consequently,
+$E[\ts^\prime]\leq 
+4{\mathsf{N}} (-\frac{1}{2}+\ln({\mathsf{N}}+1))\leq 
+4{\mathsf{N}}\ln({\mathsf{N}}+1)$.
 \end{proof}
 
 One can now prove Theorem~\ref{prop:stop}.
 
 \begin{proof}
-One has $\ts\leq \ts^\prime+\lambda_h$. Therefore,
+Since $\ts^\prime$ is the time used to obtain $\mathsf{N}-1$ fair bits.
+Assume that the last unfair bit is $\ell$. One has
+$\ts=\ts^\prime+S_{X_\tau,\ell}$, and therefore
+$E[\ts] = E[\ts^\prime]+E[S_{X_\tau,\ell}]$. Therefore,
 Theorem~\ref{prop:stop} is a direct application of
 lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.
 \end{proof}
@@ -375,7 +371,7 @@ lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.
 Notice that the calculus of the stationary time upper bound is obtained
 under the following constraint: for each vertex in the $\mathsf{N}$-cube 
 there are one ongoing arc and one outgoing arc that are removed. 
-The calculus does not consider (balanced) hamiltonian cycles, which 
+The calculus does not consider (balanced) Hamiltonian cycles, which 
 are more regular and more binding than this constraint.
 In this later context, we claim that the upper bound for the stopping time 
 should be reduced.