\begin{document}
-\author{Jean-François Couchot, Christophe Guyeux, Pierre-Cyrile Heam}
+\author{Jean-François Couchot, Christophe Guyeux, Pierre-Cyrille Heam}
\address{Institut FEMTO-ST, Université de Franche-Comté, Belfort, France}
We propose a theoretical framework proving both the chaotic properties and
that the limit distribution is uniform.
A theoretical bound on the stationary time is given and
-practical experiments show that the generators successfully passe
-the classical statsitcal tests.
+practical experiments show that the generators successfully pass
+the classical statistical tests.
\end{abstract}
\maketitle
\section{Functions with Strongly Connected $\Gamma_{\{b\}}(f)$}\label{sec:SCCfunc}
\input{generating}
-\section{Random walk on the modified Hypercube}\label{sec:hypercube}
+\section{Stopping Time}\label{sec:hypercube}
\input{stopping}
-% Donner la borne du stopping time quand on marche dedans (nouveau).
-% Énoncer le problème de la taille de cette borne
-% (elle est certes finie, mais grande).
-
-
-
-
-%\section{Quality study of the strategy}
-%6) Se pose alors la question de comment générer une stratégie de "bonne qualité". Par exemple, combien de générateurs aléatoires embarquer ? (nouveau)
-
-
\section{Experiments}\label{sec:prng}
\input{prng}