]> AND Private Git Repository - rairo15.git/blobdiff - intro.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modifs pour le style ita
[rairo15.git] / intro.tex
index dafa1cf3a53ce6e96480073167246aebc7b31a6f..c0b6e7d55d4f0dab90e4c4c57f95077979fea0d2 100644 (file)
--- a/intro.tex
+++ b/intro.tex
@@ -4,20 +4,20 @@ chosen due to their unpredictable character and their sensitiveness to initial c
 In most cases, these generators simply consist in iterating a chaotic function like 
 the logistic map~\cite{915396,915385} or the Arnold's one~\cite{5376454}\ldots
 It thus remains to find optimal parameters in such functions so that attractors are
 In most cases, these generators simply consist in iterating a chaotic function like 
 the logistic map~\cite{915396,915385} or the Arnold's one~\cite{5376454}\ldots
 It thus remains to find optimal parameters in such functions so that attractors are
-avoided, guaranteeing by doing so that generated numbers follow a uniform distribution.
+avoided, hoping by doing so that the generated numbers follow a uniform distribution.
 In order to check the quality of the produced outputs, it is usual to test the 
 PRNGs   (Pseudo-Random  Number   Generators) with statistical batteries like
 In order to check the quality of the produced outputs, it is usual to test the 
 PRNGs   (Pseudo-Random  Number   Generators) with statistical batteries like
-the so-called DieHARD~\cite{Marsaglia1996}, NIST~\cite{Nist10}, or TestU01~\cite{LEcuyerS07}.
+the so-called DieHARD~\cite{Marsaglia1996}, NIST~\cite{Nist10}, or TestU01~\cite{LEcuyerS07} ones.
 
 
-In its general understanding, the chaos notion is often reduced to the strong
+In its general understanding, chaos notion is often reduced to the strong
 sensitiveness to the initial conditions (the well known ``butterfly effect''):
 a continuous function $k$ defined on a metrical space is said 
 sensitiveness to the initial conditions (the well known ``butterfly effect''):
 a continuous function $k$ defined on a metrical space is said 
-\emph{strongly sensitive to the initial conditions} if for all point 
-$x$ and all positive value $\epsilon$, it is possible to find another 
-point $y$, as close as possible to $x$, and an integer $t$ such that the distance
+\emph{strongly sensitive to the initial conditions} if for each point 
+$x$ and each positive value $\epsilon$, it is possible to find another 
+point $y$ as close as possible to $x$, and an integer $t$ such that the distance
 between the $t$-th iterates of $x$ and $y$, denoted by $k^t(x)$ and $k^t(y)$,
 are larger than $\epsilon$. However, in his definition of chaos, Devaney~\cite{Devaney} 
 between the $t$-th iterates of $x$ and $y$, denoted by $k^t(x)$ and $k^t(y)$,
 are larger than $\epsilon$. However, in his definition of chaos, Devaney~\cite{Devaney} 
-impose to the chaotic function two other properties called
+imposes to the chaotic function two other properties called
 \emph{transitivity} and \emph{regularity}. Functions evoked above have
 been studied according to these properties, and they have been proven as chaotic on $\R$.
 But nothing guarantees that such properties are preserved when iterating the functions
 \emph{transitivity} and \emph{regularity}. Functions evoked above have
 been studied according to these properties, and they have been proven as chaotic on $\R$.
 But nothing guarantees that such properties are preserved when iterating the functions
@@ -38,214 +38,65 @@ asynchronous iterations are strongly connected. We then have proven that it is n
 and sufficient that the Markov matrix associated to this graph is doubly stochastic,
 in order to have a uniform distribution of the outputs. We have finally established 
 sufficient conditions to guarantee the first property of connectivity. Among the 
 and sufficient that the Markov matrix associated to this graph is doubly stochastic,
 in order to have a uniform distribution of the outputs. We have finally established 
 sufficient conditions to guarantee the first property of connectivity. Among the 
-generated functions, we thus considered for further investigations only the one that
+generated functions, we thus have considered for further investigations only the ones that
 satisfy the second property too. In~\cite{chgw14oip}, we have proposed an algorithmic 
 method allowing to directly obtain a strongly connected iteration graph having a doubly
 satisfy the second property too. In~\cite{chgw14oip}, we have proposed an algorithmic 
 method allowing to directly obtain a strongly connected iteration graph having a doubly
-stochastic Markov matrix. The research work presented here generalizes this latter article
-by updating the iteration domain and the metric. The obtained algorithm owns the same
-theoretical properties but with a reduced mixing time.
-
-% 
-% Pour décrire un peu plus précisément le principe de
-% la génération pseudo-aléatoire, considérons l'espace booléen 
-% $\Bool=\{0,1\}$
-% muni des lois \og +\fg{}, \og . \fg{} et \og $\overline{\bullet}$ \fg{} 
-% définies par les tableaux ci-dessous:
-
-% \begin{center}
-%   \begin{tabular}{|c|c|c|}
-%     \hline 
-%     +              & 0 & 1 \\
-%     \hline 
-%     0              & 0 & 1 \\
-%     \hline 
-%     1              & 1 & 1 \\
-%     \hline
-%   \end{tabular}\qquad
-%   \begin{tabular}{|c|c|c|}
-%     \hline 
-%     .              & 0 & 1 \\
-%     \hline 
-%     0              & 0 & 0 \\
-%     \hline 
-%     1              & 0 & 1 \\
-%     \hline
-%   \end{tabular}\qquad
-%   \begin{tabular}{|c|c|c|}
-%     \hline 
-%     x              & 0 & 1 \\
-%     \hline 
-%     $\overline{x}$ & 1 & 0 \\
-%     \hline 
-%   \end{tabular}
-% \end{center}
-
-
-% La fonction itérée est
-% une fonction $f$ de $\Bool^n$ dans lui-même qui à
-% un mot binaire $x = (x_1,\ldots,x_n)$ 
-% associe le mot $(f_1(x),\ldots, f_n(x))$.
-% Un exemple de fonction de $\Bool^n$ dans lui-même
-% est la fonction négation 
-% définie par  
-% $\neg(x)=(\overline{x_1},\dots,\overline{x_n})$. 
-
-% Le principe itératif, basé sur  le mode opératoire dit \emph{asynchrone}, est le
-% suivant: à chaque itération  $t$, on choisit un indice $i$ entre  $1$ et $n$, et
-% le mot $x^t = (x_1^t,\ldots,x_n^t)$  est remplacé par $x^{t+1} = (x_1^t,\ldots ,
-% x_{i-1}^t, f_i(x^t), x_{i+1}^t,\ldots, x_n^t)$.
-
-% Au  bout d'un  nombre $N$  d'itérations,  si la  fonction (notée  $G_f$ dans  ce
-% document)  que l'on  peut  associer à  l'algorithme  décrit ci-dessus  a de  \og
-% \emph{bonnes}\fg{} propriétés chaotiques, le  mot $x^N$ doit être \og \emph{très
-%   différent}\fg{} de  $x^0$ de  façon à  sembler ne plus  dépendre de  $x_0$. En
-% effet, pour  un générateur aléatoire, il  faut que la structure  de $x^N$ semble
-% être due  au hasard;  pour une application  cryptographique, il faut  qu'il soit
-% matériellement  impossible   (dans  les  conditions   techniques  actuelles)  de
-% retrouver $x^0$ à partir de $x^N$.
-
-% Tous  les  mots   de  $\Bool^n$  peuvent  constituer  les   $2^n$  sommets  d'un
-% \gls{graphoriente} (cf. glossaire) dans lequel  un arc relie deux sommets $x$ et
-% $x'$  s'il existe  une itération  de l'algorithme  de génération  qui  permet de
-% passer directement de  $x$ à $x'$.   Ce graphe est  appelé le \emph{graphe  d'itérations} et
-% nous montrons ici que si  l'on a un \gls{graphfortementconnexe} (cf. glossaire),
-% alors la fonction $G_f$ est transitive, donc chaotique.
-
-% Enfin, un bon générateur aléatoire se doit de 
-% fournir  des nombres selon une \gls{distributionuniforme} (cf. glossaire). 
-% La dernière partie de cet article donne, 
-% dans le cas où le graphe d'itérations est fortement connexe, 
-% une condition nécessaire et suffisante pour que
-% cette propriété soit satisfaite.
-
-
-% Le chaos a été appliqué à des domaines variés en 
-% informatique, comme les fonctions de hachage,
-% la stéganographie, la génération de nombres pseudo 
-% aléatoires\ldots
-% Toutes ces  applications  exploitent les  propriétés définissant des 
-% fonctions  chaotiques et énoncées par Devaney,  telles que la
-% transitivité, la régularité et la sensibilité aux conditions initiales.
-
-
-% Les systèmes dynamiques \emph{chaotiques} sont des processus itératifs 
-% définis par une fonction chaotique  $f$  d'un  domaine $E$ dans lui-même.
-% En démarrant d'un état quelconque $x$ du sytème, 
-% nommé par la suite \emph{configuration}, 
-% le système construit la séquence $x$, $f(x)$, $f^2(x)$, $f^3(x)$, \dots 
-% où $f^k(x)$  est le   $k^{\textrm{ème}}$ itéré  de  $f$ en  $x$.  
-% La plupart des applications informatiques dite \og chaotiques \fg{}
-% sont basées sur des processus itératifs de la forme $x^{n+1} = f(x^n)$
-% où $f$ est la fonction  \emph{tente} avec  $x^0 = 0,4001$ (donnée à la figure~\ref{fig:iter:tent}) 
-% ou la fonction  \emph{logistique} avec $\mu = 3,45$ et $x^0 = 0,1$ (donnée à la figure~\ref{fig:iter:log}) 
-% connues pour être chaotiques dans $\R$.
-
-% \begin{figure}[hb]
-% \begin{center}
-%     \subfloat[Fonction tente $f=\min\{x,\,1-x\}$]{
-%       \begin{minipage}{0.45\textwidth}
-%         \begin{center}
-%           \includegraphics[height=3cm]{images/tente.png}
-%         \end{center}
-%       \end{minipage}
-%       \label{fig:iter:tent}
-%     }
-%     \subfloat[Fonction logistique $f(x) =  \mu x (1 -x)$]{
-%       \begin{minipage}{0.45\textwidth}
-%         \begin{center}
-%           \includegraphics[height=3cm]{images/logistique.png}
-%         \end{center}
-%       \end{minipage}
-%       \label{fig:iter:log}
-%     }
-% \end{center}
-%  \caption{Systèmes itératifs basés sur des fonctions chaotiques dans $\R$ \label{fig:iter}}
-% \end{figure}
-
-
-% Cependant il n'a pas été établi que des fonctions prouvées
-% comme étant chaotiques sur $\R$ le restent sur les  nombres à virgule flottante,
-% qui est le domaine d'interprétation informatique des réels.  
-% On souhaite ainsi éviter une éventuelle perte des propriétés de chaos
-% lors de l'exécution des programmes implémentant ces fonctions. 
-% Ce document présente pour cela l'alternative suivante: 
-% à partir d'une fonction booléenne, $f: \Bool^n \rightarrow \Bool^n$, 
-% où $\Bool$ est le domaine des booléens  $\{0,1\}$, on
-% construit une fonction $G_f : \llbracket 1 ;  n \rrbracket^{\Nats}  \times \Bool^n$, 
-% où $\llbracket 1  ; n \rrbracket$ est l'ensemble des entiers
-% $\{1, 2, \hdots,  n\}$ et on itère celle-ci.
-% Comme $f$ est discrète, $G_f$ l'est aussi et les résultats théoriques
-% obtenus sur $G_f$, notamment sa chaoticité, sont maintenus durant 
-% l'implémentation.
-% Un exemple de fonction booléenne de $\Bool^n$ dans lui-même est la fonction négation 
-% définie par  
-% $\neg(x)=(\overline{x_1},\dots,\overline{x_n})$. 
-
-
-
-
-% De plus,  plutôt que de trouver des exemples de telles fonctions $f$, et de prouver 
-% (\textit{a  posteriori}) la chaoticité de $G_f$, on peut penser à caractériser  
-% les fonctions engendrant systématiquement des fonctions chaotiques.
-% Ce document présente une telle caractérisation 
-% qui s'exprime sur le graphe des itérations asynchrones
-% de la fonction booléenne $f$, qui est, intuitivement, le graphe 
-% de toutes les itérations possibles de la fonction. 
-% Cette situation se réduit en un problème portant sur des graphes à $2^n$  
-% sommets.  
-% Ainsi pour étendre l'applicabilité de cette caractérisation, on s'intéresse
-% au graphe des interactions de $f$, qui, intuitivement,
-% représente les dépendances entre les $f_i$, $1\le i \le n$ et les $i$
-% et qui ne contient que  $n$ sommets (et qui est à comparer aux $2^n$ 
-% sommets.
-% Sur ce graphe on exprime des conditions garantissant la chaoticité de la fonction $G_f$.
-% Ainsi, toutes les fonctions $G_f$ engendrées à partir d'un graphe
-% d'interactions de $f$ aux propriétés \textit{ad hoc} seront chaotiques.
-
-% Se pose enfin l'applicabilité des fonctions $G_f$ à la génération
-% de nombres pseudo aléatoires, l'aléa étant intuitivement 
-% une notion proche de celle du chaos.
-% Pour aborder cette classe de problèmes, on remarque que l'on doit au moins 
-% garantir que l'ensemble des valeurs retournées par l'algorithme suit
-% une loi uniforme, propriété qui n'est pas imposée d'un point de vue topologique.
-% Ce document montre que cette contrainte peut s'exprimer à nouveau sur le graphe des itérations asynchrones de $f$
-% et qu'on peut ainsi filtrer les bons candidats à la génération de nombres pseudo aléatoires.
-% Cette idée est validée après évaluation 
-% des générateurs de nombres pseudo aléatoires 
-% sur une batterie de tests.
+stochastic Markov matrix. 
+
+
+However, it cannot be directly deduced
+that $\chi_{\textit{14Secrypt}}$ is chaotic 
+since we do not output all the successive
+values of iterating $F_f$. 
+This algorithm only displays a
+subsequence $x^{b.n}$ of a whole chaotic sequence $x^{n}$ and
+it is indeed  definitively false that the chaos property is 
+preserved for any subsequence of a chaotic sequence.
+This article presents conditions to preserve this property.
+
+An approach to generate a large class of chaotic functions has 
+been presented in~\cite{chgw14oip}.
+It is basically fourfold:
+first build a $\mathsf{N}$-cube, next remove an Hamiltonian cycle, further add self-loop
+on each vertex and finally, translate this into a Boolean map.
+We are then left to check whether this approach proposes maps with the required conditions 
+for the chaos. 
+The answer is indeed positive. The pseudorandom number generation can thus be seen as a
+random walk in a $\mathsf{N}$-cube without a Hamiltonian cycle.
+
+In the PRNG context, there remains to find which subsequence
+is theoretically and practically 
+sufficient to extract.
+A uniform distribution is indeed awaited and this 
+cannot be obtained in a walk in the hypercube
+with paths of short length $b$.
+However, the higher 
+is $b$  the slower is the 
+algorithm to generate pseudorandom
+numbers. 
+The  time  until the
+corresponding  Markov chain is close 
+to the uniform distribution is a metric
+that should be theoretically and practically studied.
+Finally, the ability of the approach to face classical 
+tests suite has to be evaluated.
+
+
+%A upper bound of this time  quadratic in the number of 
+%generated bits.
 
 
 The remainder of this article is organized as follows. The next section is devoted to 
 
 
 The remainder of this article is organized as follows. The next section is devoted to 
-preliminaries, basic notations, and terminologies regarding asynchronous iterations.
+preliminaries, basic notations, and terminologies regarding Boolean map iterations.
 Then, in Section~\ref{sec:proofOfChaos}, Devaney's definition of chaos is recalled
 Then, in Section~\ref{sec:proofOfChaos}, Devaney's definition of chaos is recalled
-while the proofs of chaos of our most general PRNGs is provided. Section~\ref{sec:SCCfunc} shows how to generate functions and a number of iterations such that the iteration graph is strongly connected, making the
-PRNG chaotic. The next section focus on examples of such graphs obtained by modifying the 
-hypercube, while Section~\ref{sec:prng} establishes the link between the theoretical study and
-pseudorandom number generation. 
+while the proofs of chaos of our most general PRNGs is provided. 
+This is the first major contribution.
+Section~\ref{sec:SCCfunc} shows how to generate functions with required properties 
+making the PRNG chaotic.
+The next section (Sect.~\ref{sec:hypercube}) defines the theoretical framework 
+to study the stopping-time, \textit{i.e.}, time until reaching
+a uniform distribution.
+This is the second major contribution.
+The Section~\ref{sec:prng} gives practical results on evaluating the PRNG against the NIST suite.
 This research work ends by a conclusion section, where the contribution is summarized and
 intended future work is outlined.
 This research work ends by a conclusion section, where the contribution is summarized and
 intended future work is outlined.
-
-% Le reste de ce document est organisé comme suit. 
-% La section~\ref{section:chaos} présente ce qu'est un système dynamique discret booléen itérant une fonction $f$.
-% La chaoticité de la fonction engendrée $G_f$ est caractérisée en 
-% section~\ref{sec:charac}. 
-% Des conditions suffisantes pour obtenir cette chaoticité sont présentées  en
-% section~\ref{sec:sccg}.
-% L'application à la génération de nombres pseudo aléatoires est formalisée,
-% les fonctions dont l'image est uniformément distribuée sur le domaine sont
-% caractérisées et les générateurs sont évalués en section~\ref{sec:prng}.
-
-% Dans  la section  suivante,  nous  rappelons les  notions  élémentaires sur  les
-% systèmes   booléens.   La  section~\ref{section:caracterisation}   présente  les
-% définitions théoriques liées au chaos. Ensuite, une application de ces résultats
-% à    la   génération    de   nombres    pseudo-aléatoires   est    proposée   en
-% section~\ref{section:genpa}  ainsi  qu'une   méthode  permettant  d'obtenir  des
-% matrices         d'itérations         doublement        stochastiques         en
-% section~\ref{section:genmat}.  Enfin, en section~\ref{section:expes}  la qualité
-% du PRNG obtenu est éprouvée avec les tests standards du domaine.
-% 
-
-%%% Local Variables: 
-%%% mode: latex
-%%% TeX-master: "main"
-%%% End: