\begin{abstract}
-This paper is dedicated to the desgin of chaotic random generators
+This paper is dedicated to the design of chaotic random generators
and extends previous works proposed by some of the authors.
We propose a theoretical framework proving both the chaotic properties and
that the limit distribution is uniform.
\maketitle
\section{Introduction}
-%\input{intro}
+\input{intro}
\section{\uppercase{Preliminaries}}\label{sec:preliminaries}
\input{preliminaries}
-\section{Proof Of Chaos}
+\section{Proof Of Chaos}\label{sec:proofOfChaos}
\input{chaos}
-\section{Functions with Strongly Connected $\Gamma_{\{b\}}(f)$}
+\section{Functions with Strongly Connected $\Gamma_{\{b\}}(f)$}\label{sec:SCCfunc}
\input{generating}
-\section{Random walk on the modified Hypercube}
+\section{Random walk on the modified Hypercube}\label{sec:hypercube}
\input{stopping}
% Donner la borne du stopping time quand on marche dedans (nouveau).
%6) Se pose alors la question de comment générer une stratégie de "bonne qualité". Par exemple, combien de générateurs aléatoires embarquer ? (nouveau)
-\section{Application to Pseudorandom Number Generation}
+\section{Application to Pseudorandom Number Generation}\label{sec:prng}
\input{prng}
\JFC{ajouter ici les expérimentations}
\section{Conclusion}
-%\input{conclusion}
+\input{conclusion}
%\acknowledgements{...}