-%
-% Dans son acception vulgarisée,
-% la notion de chaos est souvent réduite à celle de forte sensibilité
-% aux conditions initiales (le fameux \og \emph{effet papillon}\fg{}):
-% une fonction continue $k$ définie sur un espace métrique
-% est dite \emph{fortement sensible aux conditions initiales} si pour tout
-% point $x$ et pour toute valeur positive $\epsilon$
-% il est possible de trouver un point $y$, arbitrairement proche
-% de $x$, et un entier $t$ tels que la distance entre les
-% $t^{\textrm{ièmes}}$ itérés de $x$ et de $y$
-% -- notés $k^t(x)$ et $k^t(y)$
-% -- est supérieure à $\epsilon$.
-% Cependant, dans sa définition du chaos,
-% Devaney~\cite{Devaney} impose à la fonction chaotique deux autres propriétés
-% appelées \emph{transitivité} et \emph{régularité},
-% Les fonctions citées plus haut ont été étudiées
-% au regard de ces propriétés et ont été prouvées comme chaotiques sur $\R$.
-% Cependant, rien ne garantit que ces propriétés sont préservées sur les nombres
-% flottants qui est le domaine d'interprétation des nombres réels de $\R$.
-%
-% Pour éviter cette perte de chaos, nous avons présenté des PRNGs qui itèrent des
-% fonctions continues $G_f$ sur un domaine discret $\{ 1, \ldots, n \}^{\Nats}
-% \times \{0,1\}^n$ où $f$ est une fonction booléenne (\textit{i.e.}, $f :
-% \{0,1\}^n \rightarrow \{0,1\}^n$). Ces générateurs sont
-% $\textit{CIPRNG}_f^1(u)$ \cite{guyeuxTaiwan10,bcgr11:ip},
-% $\textit{CIPRNG}_f^2(u,v)$ \cite{wbg10ip} et
-% $\chi_{\textit{14Secrypt}}$ \cite{chgw14oip} où \textit{CI} signifie
-% \emph{Chaotic Iterations}.
-%
-% Dans~\cite{bcgr11:ip} nous avons tout d'abord prouvé que pour établir la nature
-% chaotique de l'algorithme $\textit{CIPRNG}_f^1$, il est nécessaire et suffisant
-% que le graphe des itérations asynchrones soit fortement connexe. Nous avons
-% ensuite prouvé que pour que la sortie de cet algorithme suive une loi de
-% distribution uniforme, il est nécessaire et suffisant que la matrice de Markov
-% associée à ce graphe soit doublement stochastique. Nous avons enfin établi des
-% conditions suffisantes pour garantir la première propriété de connexité. Parmi
-% les fonctions générées, on ne retenait ensuite que celles qui vérifiait la
-% seconde propriété. Dans~\cite{chgw14oip}, nous avons proposé une démarche
-% algorithmique permettant d'obtenir directement un graphe d'itérations fortement
-% connexe et dont la matrice de Markov est doublement stochastique. Le travail
-% présenté ici généralise ce dernier article en changeant le domaine d'itération,
-% et donc de métrique. L'algorithme obtenu possède les même propriétés théoriques
-% mais un temps de mélange plus réduit.