-%
-% Dans son acception vulgarisée,
-% la notion de chaos est souvent réduite à celle de forte sensibilité
-% aux conditions initiales (le fameux \og \emph{effet papillon}\fg{}):
-% une fonction continue $k$ définie sur un espace métrique
-% est dite \emph{fortement sensible aux conditions initiales} si pour tout
-% point $x$ et pour toute valeur positive $\epsilon$
-% il est possible de trouver un point $y$, arbitrairement proche
-% de $x$, et un entier $t$ tels que la distance entre les
-% $t^{\textrm{ièmes}}$ itérés de $x$ et de $y$
-% -- notés $k^t(x)$ et $k^t(y)$
-% -- est supérieure à $\epsilon$.
-% Cependant, dans sa définition du chaos,
-% Devaney~\cite{Devaney} impose à la fonction chaotique deux autres propriétés
-% appelées \emph{transitivité} et \emph{régularité},
-% Les fonctions citées plus haut ont été étudiées
-% au regard de ces propriétés et ont été prouvées comme chaotiques sur $\R$.
-% Cependant, rien ne garantit que ces propriétés sont préservées sur les nombres
-% flottants qui est le domaine d'interprétation des nombres réels de $\R$.
-%
-% Pour éviter cette perte de chaos, nous avons présenté des PRNGs qui itèrent des
-% fonctions continues $G_f$ sur un domaine discret $\{ 1, \ldots, n \}^{\Nats}
-% \times \{0,1\}^n$ où $f$ est une fonction booléenne (\textit{i.e.}, $f :
-% \{0,1\}^n \rightarrow \{0,1\}^n$). Ces générateurs sont
-% $\textit{CIPRNG}_f^1(u)$ \cite{guyeuxTaiwan10,bcgr11:ip},
-% $\textit{CIPRNG}_f^2(u,v)$ \cite{wbg10ip} et
-% $\chi_{\textit{14Secrypt}}$ \cite{chgw14oip} où \textit{CI} signifie
-% \emph{Chaotic Iterations}.
-%
-% Dans~\cite{bcgr11:ip} nous avons tout d'abord prouvé que pour établir la nature
-% chaotique de l'algorithme $\textit{CIPRNG}_f^1$, il est nécessaire et suffisant
-% que le graphe des itérations asynchrones soit fortement connexe. Nous avons
-% ensuite prouvé que pour que la sortie de cet algorithme suive une loi de
-% distribution uniforme, il est nécessaire et suffisant que la matrice de Markov
-% associée à ce graphe soit doublement stochastique. Nous avons enfin établi des
-% conditions suffisantes pour garantir la première propriété de connexité. Parmi
-% les fonctions générées, on ne retenait ensuite que celles qui vérifiait la
-% seconde propriété. Dans~\cite{chgw14oip}, nous avons proposé une démarche
-% algorithmique permettant d'obtenir directement un graphe d'itérations fortement
-% connexe et dont la matrice de Markov est doublement stochastique. Le travail
-% présenté ici généralise ce dernier article en changeant le domaine d'itération,
-% et donc de métrique. L'algorithme obtenu possède les même propriétés théoriques
-% mais un temps de mélange plus réduit.
+In its general understanding, the chaos notion is often reduced to the strong
+sensitiveness to the initial conditions (the well known ``butterfly effect''):
+a continuous function $k$ defined on a metrical space is said
+\emph{strongly sensitive to the initial conditions} if for all point
+$x$ and all positive value $\epsilon$, it is possible to find another
+point $y$, as close as possible to $x$, and an integer $t$ such that the distance
+between the $t$-th iterates of $x$ and $y$, denoted by $k^t(x)$ and $k^t(y)$,
+are larger than $\epsilon$. However, in his definition of chaos, Devaney~\cite{Devaney}
+impose to the chaotic function two other properties called
+\emph{transitivity} and \emph{regularity}. Functions evoked above have
+been studied according to these properties, and they have been proven as chaotic on $\R$.
+But nothing guarantees that such properties are preserved when iterating the functions
+on floating point numbers, which is the domain of interpretation of real numbers $\R$ on
+machines.
+
+To avoid this lack of chaos, we have previously presented some PRNGs that iterate
+continuous functions $G_f$ on a discrete domain $\{ 1, \ldots, n \}^{\Nats}
+ \times \{0,1\}^n$, where $f$ is a Boolean function (\textit{i.e.}, $f :
+ \{0,1\}^n \rightarrow \{0,1\}^n$). These generators are
+$\textit{CIPRNG}_f^1(u)$ \cite{guyeuxTaiwan10,bcgr11:ip},
+$\textit{CIPRNG}_f^2(u,v)$ \cite{wbg10ip} and
+$\chi_{\textit{14Secrypt}}$ \cite{chgw14oip} where \textit{CI} means
+\emph{Chaotic Iterations}.
+We have firstly proven in~\cite{bcgr11:ip} that, to establish the chaotic nature
+of algorithm $\textit{CIPRNG}_f^1$, it is necessary and sufficient that the
+asynchronous iterations are strongly connected. We then have proven that it is necessary
+and sufficient that the Markov matrix associated to this graph is doubly stochastic,
+in order to have a uniform distribution of the outputs. We have finally established
+sufficient conditions to guarantee the first property of connectivity. Among the
+generated functions, we thus considered for further investigations only the one that
+satisfy the second property too. In~\cite{chgw14oip}, we have proposed an algorithmic
+method allowing to directly obtain a strongly connected iteration graph having a doubly
+stochastic Markov matrix. The research work presented here generalizes this latter article
+by updating the iteration domain and the metric. The obtained algorithm owns the same
+theoretical properties but with a reduced mixing time.
+