-Let us finally present the pseudorandom number generator $\chi_{\textit{14Secrypt}}$
-which is based on random walks in $\Gamma(f)$.
-More precisely, let be given a Boolean map $f:\Bool^n \rightarrow \Bool^n$,
-a PRNG \textit{Random},
-an integer $b$ that corresponds to an awaited mixing time, and
-an initial configuration $x^0$.
-Starting from $x^0$, the algorithm repeats $b$ times
-a random choice of which edge to follow and traverses this edge.
-The final configuration is thus outputted.
-This PRNG is formalized in Algorithm~\ref{CI Algorithm}.
-
-
-
-\vspace{-1em}
-\begin{algorithm}[ht]
-%\begin{scriptsize}
-\KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$ ($n$ bits)}
-\KwOut{a configuration $x$ ($n$ bits)}
-$x\leftarrow x^0$\;
-\For{$i=0,\dots,b-1$}
-{
-$s\leftarrow{\textit{Random}(n)}$\;
-$x\leftarrow{F_f(s,x)}$\;
-}
-return $x$\;
-%\end{scriptsize}
-\caption{Pseudo Code of the $\chi_{\textit{14Secrypt}}$ PRNG}
-\label{CI Algorithm}
-\end{algorithm}
-\vspace{-0.5em}
-This PRNG is a particularized version of Algorithm given in~\cite{BCGR11}.
-Compared to this latter, the length of the random
-walk of our algorithm is always constant (and is equal to $b$) whereas it
-was given by a second PRNG in this latter.
-However, all the theoretical results that are given in~\cite{BCGR11} remain
-true since the proofs do not rely on this fact.
-
-Let $f: \Bool^{n} \rightarrow \Bool^{n}$.
-It has been shown~\cite[Th. 4, p. 135]{BCGR11}} that
-if its iteration graph is strongly connected, then
-the output of $\chi_{\textit{14Secrypt}}$ follows
-a law that tends to the uniform distribution
-if and only if its Markov matrix is a doubly stochastic matrix.
-
-Let us now present a method to
-generate functions
-with Doubly Stochastic matrix and Strongly Connected iteration graph,
- denoted as DSSC matrix.