X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/2644c7bc8564e7829d6f0d9b2e2a66e6460aec67..HEAD:/prng.tex?ds=sidebyside diff --git a/prng.tex b/prng.tex index 45fcfcd..5025b4e 100644 --- a/prng.tex +++ b/prng.tex @@ -1,16 +1,16 @@ -Let us finally present the pseudorandom number generator $\chi_{\textit{15Rairo}}$ +Let us finally present the pseudorandom number generator $\chi_{\textit{15Rairo}}$, which is based on random walks in $\Gamma_{\{b\}}(f)$. More precisely, let be given a Boolean map $f:\Bool^{\mathsf{N}} \rightarrow \Bool^\mathsf{N}$, a PRNG \textit{Random}, -an integer $b$ that corresponds an iteration number (\textit{i.e.}, the length of the walk), and +an integer $b$ that corresponds to an iteration number (\textit{i.e.}, the length of the walk), and an initial configuration $x^0$. Starting from $x^0$, the algorithm repeats $b$ times -a random choice of which edge to follow and traverses this edge -provided it is allowed to traverse it, \textit{i.e.}, +a random choice of which edge to follow, and traverses this edge +provided it is allowed to do so, \textit{i.e.}, when $\textit{Random}(1)$ is not null. The final configuration is thus outputted. -This PRNG is formalized in Algorithm~\ref{CI Algorithm}. +This PRNG is formalized in Algorithm~\ref{CI Algorithm:2}. @@ -29,7 +29,7 @@ $x\leftarrow{F_f(s,x)}$\; return $x$\; %\end{scriptsize} \caption{Pseudo Code of the $\chi_{\textit{15Rairo}}$ PRNG} -\label{CI Algorithm} +\label{CI Algorithm:2} \end{algorithm} @@ -47,8 +47,209 @@ Sect.~\ref{sec:hypercube}. Notice that the chaos property of $G_f$ given in Sect.\ref{sec:proofOfChaos} only requires that the graph $\Gamma_{\{b\}}(f)$ is strongly connected. -Since the $\chi_{\textit{15Rairo}}$ algorithme -only adds propbability constraints on existing edges, +Since the $\chi_{\textit{15Rairo}}$ algorithm +only adds probability constraints on existing edges, it preserves this property. +For each number $\mathsf{N}=4,5,6,7,8$ of bits, we have generated +the functions according to the method +given in Sect.~\ref{sec:SCCfunc}. +For each $\mathsf{N}$, we have then restricted this evaluation to the function +whose Markov Matrix (issued from Eq.~(\ref{eq:Markov:rairo})) +has the smallest practical mixing time. +Such functions are +given in Table~\ref{table:nc}. +In this table, let us consider for instance +the function $\textcircled{a}$ from $\Bool^4$ to $\Bool^4$ +defined by the following images : +$[13, 10, 9, 14, 3, 11, 1, 12, 15, 4, 7, 5, 2, 6, 0, 8]$. +In other words, the image of $3~(0011)$ by $\textcircled{a}$ is $14~(1110)$: +it is obtained as the binary value of the fourth element in +the second list (namely~14). + +In this table the column +that is labeled with $b$ (respectively by $E[\tau]$) +gives the practical mixing time +where the deviation to the standard distribution is lesser than $10^{-6}$ +(resp. the theoretical upper bound of stopping time as described in +Sect.~\ref{sec:hypercube}). + + + +\begin{table*}[t] +\begin{center} +\begin{scriptsize} +\begin{tabular}{|c|c|c|c|c|} +\hline +Function $f$ & $f(x)$, for $x$ in $(0,1,2,\hdots,2^n-1)$ & $\mathsf{N}$ & $b$ +&$E[\tau]$\\ +\hline +%%%%% n= 4 +$\textcircled{a}$&[13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8]&4&64&154\\ +\hline +%%%%% n= 5 +$\textcircled{b}$& +[29, 22, 25, 30, 19, 27, 24, 16, 21, 6, 5, 28, 23, 26, 1, 17, & 5 & 78 & 236\\ +& + 31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 7, 20, 11, 18, 0, 4] +&&&\\ +%%%%% n= 6 +\hline +& +[55, 60, 45, 44, 58, 62, 61, 48, 53, 50, 52, 36, 59, 34, 33, 49, +&&&\\ +& + 15, 42, 47, 46, 35, 10, 57, 56, 7, 54, 39, 37, 51, 2, 1, 40, 63, +&&&\\ +$\textcircled{c}$& + 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, +&6&88&335\\ +& +12, 29, 8, 43, 14, 41, 0, 5, 38, 4, 6, 11, 3, 9, 32] +&&&\\ +%%%%% n= 7 +\hline +& +[111, 94, 93, 116, 122, 90, 125, 88, 115, 126, 119, 84, 123, 98, +&&&\\ +& + 81, 120, 109, 106, 105, 110, 99, 107, 104, 72, 71, 118, 117, + &&&\\ +& +96, 103, 102, 113, 64, 79, 86, 95, 124, 83, 91, 121, 24, 85, 22, +&&&\\ +$\textcircled{d}$& +69, 20, 19, 114, 17, 112, 77, 76, 13, 108, 74, 10, 9, 73, 67, 66, +&7 & 99&450\\ + +& + 101, 100, 75, 82, 97, 0, 127, 54, 57, 62, 51, 59, 56, 48, 53, 38, +&&&\\ +& + 37, 60, 55, 58, 33, 49, 63, 44, 47, 40, 42, 46, 45, 41, 35, 34, +&&&\\ +& +39, 52, 43, 50, 32, 36, 29, 28, 61, 92, 26, 18, 89, 25, 87, 30, +&&&\\ +& +23, 4, 27, 2, 16, 80, 31, 78, 15, 14, 3, 11, 8, 12, 5, 70, 21, +&&&\\ +& +68, 7, 6, 65, 1] +&&&\\ + + +%%%%%n=8 +\hline +& +[223, 190, 249, 254, 187, 251, 233, 232, 183, 230, 247, 180, 227, +&&&\\ +& +178, 240, 248, 237, 236, 253, 172, 203, 170, 201, 168, 229, 166, +&&&\\ +& +165, 244, 163, 242, 241, 192, 215, 220, 205, 216, 218, 222, 221, +&&&\\ +& +208, 213, 210, 212, 214, 219, 211, 217, 209, 239, 202, 207, 140, +&&&\\ +& +139, 234, 193, 204, 135, 196, 199, 132, 194, 130, 225, 200, 159, +&&&\\ +& +62, 185, 252, 59, 250, 169, 56, 191, 246, 245, 52, 243, 50, 176, +&&&\\ +& +48, 173, 238, 189, 44, 235, 42, 137, 184, 231, 38, 37, 228, 35, +&&&\\ +& +226, 177, 224, 151, 156, 141, 152, 154, 158, 157, 144, 149, 146, +&&&\\ +& +148, 150, 155, 147, 153, 145, 175, 206, 143, 136, 11, 142, 129, +&&&\\ +$\textcircled{e}$& +8, 7, 198, 197, 4, 195, 2, 161, 160, 255, 124, 109, 108, 122, +&8&110&582\\ +& + 126, 125, 112, 117, 114, 116, 100, 123, 98, 97, 113, 79, 106, +&&&\\ +& + 111, 110, 99, 74, 121, 120, 71, 118, 103, 101, 115, 66, 65, +&&&\\ +& +104, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, +&&&\\ +& +80, 88, 77, 76, 93, 72, 107, 78, 105, 64, 69, 102, 68, 70, 75, +&&&\\ +& +67, 73, 96, 55, 58, 45, 188, 51, 186, 61, 40, 119, 182, 181, +&&&\\ +& +53, 179, 54, 33, 49, 15, 174, 47, 60, 171, 46, 57, 32, 167, 6, +&&&\\ +& + 36, 164, 43, 162, 1, 0, 63, 26, 25, 30, 19, 27, 17, 28, 31, +&&&\\ +& +20, 23, 21, 18, 22, 16, 24, 13, 10, 29, 14, 3, 138, 41, 12, +&&&\\ +& +39, 134, 133, 5, 131, 34, 9, 128] +&&&\\ +\hline +\end{tabular} +\end{scriptsize} +\end{center} +\caption{Functions with DSCC Matrix and smallest MT\label{table:nc}} +\end{table*} + + + +Let us first discuss about results against the NIST test suite. +In our experiments, 100 sequences (s = 100) of 1,000,000 bits are generated and tested. +If the value $\mathbb{P}_T$ of any test is smaller than 0.0001, the sequences are considered to be not good enough +and the generator is unsuitable. Table~\ref{The passing rate} shows $\mathbb{P}_T$ of sequences based on discrete +chaotic iterations using different schemes. If there are at least two statistical values in a test, this test is +marked with an asterisk and the average value is computed to characterize the statistics. +We can see in Table \ref{The passing rate} that all the rates are greater than 97/100, \textit{i.e.}, all the generators +achieve to pass the NIST battery of tests. + + + +\begin{table} +\renewcommand{\arraystretch}{1.3} +\begin{center} +\begin{scriptsize} +\setlength{\tabcolsep}{2pt} + + +\begin{tabular}{|l|l|l|l|l|l|} +\hline +Method &$\textcircled{a}$& $\textcircled{b}$ & $\textcircled{c}$ & $\textcircled{d}$ & $\textcircled{e}$ \\ \hline\hline +Frequency (Monobit)& 0.851 (0.98)& 0.719 (0.99)& 0.699 (0.99)& 0.514 (1.0)& 0.798 (0.99)\\ \hline +Frequency (Monobit)& 0.851 (0.98)& 0.719 (0.99)& 0.699 (0.99)& 0.514 (1.0)& 0.798 (0.99)\\ \hline +Frequency within a Block& 0.262 (0.98)& 0.699 (0.98)& 0.867 (0.99)& 0.145 (1.0)& 0.455 (0.99)\\ \hline +Cumulative Sums (Cusum) *& 0.301 (0.98)& 0.521 (0.99)& 0.688 (0.99)& 0.888 (1.0)& 0.598 (1.0)\\ \hline +Runs& 0.224 (0.97)& 0.383 (0.97)& 0.108 (0.96)& 0.213 (0.99)& 0.616 (0.99)\\ \hline +Longest Run of 1s & 0.383 (1.0)& 0.474 (1.0)& 0.983 (0.99)& 0.699 (0.98)& 0.897 (0.96)\\ \hline +Binary Matrix Rank& 0.213 (1.0)& 0.867 (0.99)& 0.494 (0.98)& 0.162 (0.99)& 0.924 (0.99)\\ \hline +Disc. Fourier Transf. (Spect.)& 0.474 (1.0)& 0.739 (0.99)& 0.012 (1.0)& 0.678 (0.98)& 0.437 (0.99)\\ \hline +Unoverlapping Templ. Match.*& 0.505 (0.990)& 0.521 (0.990)& 0.510 (0.989)& 0.511 (0.990)& 0.499 (0.990)\\ \hline +Overlapping Temp. Match.& 0.574 (0.98)& 0.304 (0.99)& 0.437 (0.97)& 0.759 (0.98)& 0.275 (0.99)\\ \hline +Maurer's Universal Statistical& 0.759 (0.96)& 0.699 (0.97)& 0.191 (0.98)& 0.699 (1.0)& 0.798 (0.97)\\ \hline +Approximate Entropy (m=10)& 0.759 (0.99)& 0.162 (0.99)& 0.867 (0.99)& 0.534 (1.0)& 0.616 (0.99)\\ \hline +Random Excursions *& 0.666 (0.994)& 0.410 (0.962)& 0.287 (0.998)& 0.365 (0.994)& 0.480 (0.985)\\ \hline +Random Excursions Variant *& 0.337 (0.988)& 0.519 (0.984)& 0.549 (0.994)& 0.225 (0.995)& 0.533 (0.993)\\ \hline +Serial* (m=10)& 0.630 (0.99)& 0.529 (0.99)& 0.460 (0.99)& 0.302 (0.995)& 0.360 (0.985)\\ \hline +Linear Complexity& 0.719 (1.0)& 0.739 (0.99)& 0.759 (0.98)& 0.122 (0.97)& 0.514 (0.99)\\ \hline +\end{tabular} +\end{scriptsize} +\end{center} +\caption{NIST SP 800-22 test results ($\mathbb{P}_T$)} +\label{The passing rate} +\end{table} + +