X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/28e2670bed58d41eddd7820a3c86f9eef9870c33..3820ec6286eab552baad3b3d7c0451e1bbc42482:/stopping.tex?ds=inline diff --git a/stopping.tex b/stopping.tex index 9309221..567ab01 100644 --- a/stopping.tex +++ b/stopping.tex @@ -13,14 +13,14 @@ First of all, let $\pi$, $\mu$ be two distributions on $\Bool^n$. The total variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is defined by $$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ It is known that -$$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Bool^n}|\pi(x)-\mu(x)|.$$ Moreover, if +$$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^n}|\pi(X)-\mu(X)|.$$ Moreover, if $\nu$ is a distribution on $\Bool^n$, one has $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$ Let $P$ be the matrix of a Markov chain on $\Bool^n$. $P(x,\cdot)$ is the distribution induced by the $x$-th row of $P$. If the Markov chain induced by $P$ has a stationary distribution $\pi$, then we define -$$d(t)=\max_{x\in\Bool^n}\tv{P^t(x,\cdot)-\pi}.$$ +$$d(t)=\max_{X\in\Bool^n}\tv{P^t(X,\cdot)-\pi}.$$ It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il un intérêt dans la preuve ensuite.} @@ -48,86 +48,103 @@ random mapping representation of the Markov chain. A {\it randomized stopping time} for the Markov chain is a stopping time for $(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$ as stationary distribution, then a {\it stationary time} $\tau$ is a -randomized stopping time (possibly depending on the starting position $x$), +randomized stopping time (possibly depending on the starting position $X$), such that the distribution of $X_\tau$ is $\pi$: -$$\P_x(X_\tau=y)=\pi(y).$$ +$$\P_X(X_\tau=Y)=\pi(Y).$$ -\JFC{Ou ceci a-t-il ete prouvé} +\JFC{Ou ceci a-t-il ete prouvé. On ne définit pas ce qu'est un strong stationary time.} \begin{Theo} -If $\tau$ is a strong stationary time, then $d(t)\leq \max_{x\in\Bool^n} -\P_x(\tau > t)$. +If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^n} +\P_X(\tau > t)$. \end{Theo} %Let $\Bool^n$ be the set of words of length $n$. -Let $E=\{(x,y)\mid -x\in \Bool^n, y\in \Bool^n,\ x=y \text{ or } x\oplus y \in 0^*10^*\}$. +Let $E=\{(X,Y)\mid +X\in \Bool^n, Y\in \Bool^n,\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$. In other words, $E$ is the set of all the edges in the classical $n$-cube. Let $h$ be a function from $\Bool^n$ into $\llbracket 1, n \rrbracket$. Intuitively speaking $h$ aims at memorizing for each node -$x \in \Bool^n$ which edge is removed in the Hamiltonian cycle, +$X \in \Bool^n$ which edge is removed in the Hamiltonian cycle, \textit{i.e.} which bit in $\llbracket 1, n \rrbracket$ cannot be switched. -We denote by $E_h$ the set $E\setminus\{(x,y)\mid x\oplus y = -0^{n-h(x)}10^{h(x)-1}\}$. This is the set of the modified hypercube, +We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y = +0^{n-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube, \textit{i.e.}, the $n$-cube where the Hamiltonian cycle $h$ has been removed. -We define the Markov matrix $P_h$ for each line $x$ and -each column $y$ as follows: +We define the Markov matrix $P_h$ for each line $X$ and +each column $Y$ as follows: $$\left\{ \begin{array}{ll} -P_h(x,x)=\frac{1}{2}+\frac{1}{2n} & \\ -P_h(x,y)=0 & \textrm{if $(x,y)\notin E_h$}\\ -P_h(x,y)=\frac{1}{2n} & \textrm{if $x\neq y$ and $(x,y) \in E_h$} +P_h(X,X)=\frac{1}{2}+\frac{1}{2n} & \\ +P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\ +P_h(X,Y)=\frac{1}{2n} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} \end{array} \right. $$ We denote by $\ov{h} : \Bool^n \rightarrow \Bool^n$ the function -such that for any $x \in \Bool^n $, -$(x,\ov{h}(x)) \in E$ and $x\oplus\ov{h}(x)=0^{n-h(x)}10^{h(x)-1}$. -The function $\ov{h}$ is said {\it square-free} if for every $x\in \Bool^n$, -$\ov{h}(\ov{h}(x))\neq x$. +such that for any $X \in \Bool^n $, +$(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1}$. +The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^n$, +$\ov{h}(\ov{h}(X))\neq X$. \begin{Lemma}\label{lm:h} -If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(x))\neq h(x)$. +If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$. \end{Lemma} -\begin{Proof} -\JFC{ecrire la preuve} -\end{Proof} +\begin{proof} +Let $\ov{h}$ be bijective. +Let $k\in \llbracket 1, n \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$. +Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and +$\ov{h}^{-1}(X)\oplus X = 0^{n-k}10^{k-1}$. +Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$. +By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and +$X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1} = 0^{n-k}10^{k-1}$. +Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$. +This contradicts the square-freeness of $\ov{h}$. +\end{proof} -Let $Z$ be a random variable over -$\llbracket 1, n \rrbracket \times\{0,1\}$ uniformly distributed. - For $X\in \Bool^n$, we -define, with $Z=(i,x)$, +Let $Z$ be a random variable that is uniformly distributed over +$\llbracket 1, n \rrbracket \times \Bool$. +For $X\in \Bool^n$, we +define, with $Z=(i,b)$, $$ \left\{ \begin{array}{ll} -f(X,Z)=X\oplus (0^{n-i}10^{i-1}) & \text{if } x=1 \text{ and } i\neq h(X),\\ +f(X,Z)=X\oplus (0^{n-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\ f(X,Z)=X& \text{otherwise.} \end{array}\right. $$ -The pair $f,Z$ is a random mapping representation of $P_h$. +The Markov chain is thus defined as +$$ +X_t= f(X_{t-1},Z_t) +$$ +The pair $(f,Z)$ is a random mapping representation of $P_h$. +\JFC{interet de la phrase precedente} %%%%%%%%%%%%%%%%%%%%%%%%%%%ù -\section{Stopping time} - -An integer $\ell\in\{1,\ldots,n\}$ is said {\it fair} at time $t$ if there -exists $0\leq j