X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/3820ec6286eab552baad3b3d7c0451e1bbc42482..039eee12186be85d7a74a188489abd12bfe554fd:/stopping.tex diff --git a/stopping.tex b/stopping.tex index 567ab01..d095a3a 100644 --- a/stopping.tex +++ b/stopping.tex @@ -176,14 +176,16 @@ let $S_{X,\ell}$ be the random variable that counts the number of steps from $X$ until we reach a configuration where $\ell$ is fair. More formally -$$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,\.)\text{ and } X_0=X\}.$$ +$$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$ We denote by $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$ \begin{Lemma}\label{prop:lambda} -If $\ov{h}$ is a square-free bijective function, then one has $E[\lambda_h]\leq 8n^2.$ +If $\ov{h}$ is a square-free bijective function, then the inequality +$E[\lambda_h]\leq 8n^2$ is established. + \end{Lemma} \begin{proof} @@ -244,4 +246,4 @@ Theorem~\ref{prop:stop} is a direct application of lemma~\ref{prop:lambda} and~\ref{lm:stopprime}. \end{proof} -\end{document} +