X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/412f54fbed2c443f03aa09cc72f559221e63d83b..428720e875baf64678c06f2c75ae55185b18d81a:/intro.tex?ds=sidebyside diff --git a/intro.tex b/intro.tex index 3f51a08..f4ed222 100644 --- a/intro.tex +++ b/intro.tex @@ -24,30 +24,27 @@ But nothing guarantees that such properties are preserved when iterating the fun on floating point numbers, which is the domain of interpretation of real numbers $\R$ on machines. -% -% Pour éviter cette perte de chaos, nous avons présenté des PRNGs qui itèrent des -% fonctions continues $G_f$ sur un domaine discret $\{ 1, \ldots, n \}^{\Nats} -% \times \{0,1\}^n$ où $f$ est une fonction booléenne (\textit{i.e.}, $f : -% \{0,1\}^n \rightarrow \{0,1\}^n$). Ces générateurs sont -% $\textit{CIPRNG}_f^1(u)$ \cite{guyeuxTaiwan10,bcgr11:ip}, -% $\textit{CIPRNG}_f^2(u,v)$ \cite{wbg10ip} et -% $\chi_{\textit{14Secrypt}}$ \cite{chgw14oip} où \textit{CI} signifie -% \emph{Chaotic Iterations}. -% -% Dans~\cite{bcgr11:ip} nous avons tout d'abord prouvé que pour établir la nature -% chaotique de l'algorithme $\textit{CIPRNG}_f^1$, il est nécessaire et suffisant -% que le graphe des itérations asynchrones soit fortement connexe. Nous avons -% ensuite prouvé que pour que la sortie de cet algorithme suive une loi de -% distribution uniforme, il est nécessaire et suffisant que la matrice de Markov -% associée à ce graphe soit doublement stochastique. Nous avons enfin établi des -% conditions suffisantes pour garantir la première propriété de connexité. Parmi -% les fonctions générées, on ne retenait ensuite que celles qui vérifiait la -% seconde propriété. Dans~\cite{chgw14oip}, nous avons proposé une démarche -% algorithmique permettant d'obtenir directement un graphe d'itérations fortement -% connexe et dont la matrice de Markov est doublement stochastique. Le travail -% présenté ici généralise ce dernier article en changeant le domaine d'itération, -% et donc de métrique. L'algorithme obtenu possède les même propriétés théoriques -% mais un temps de mélange plus réduit. +To avoid this lack of chaos, we have previously presented some PRNGs that iterate +continuous functions $G_f$ on a discrete domain $\{ 1, \ldots, n \}^{\Nats} + \times \{0,1\}^n$, where $f$ is a Boolean function (\textit{i.e.}, $f : + \{0,1\}^n \rightarrow \{0,1\}^n$). These generators are +$\textit{CIPRNG}_f^1(u)$ \cite{guyeuxTaiwan10,bcgr11:ip}, +$\textit{CIPRNG}_f^2(u,v)$ \cite{wbg10ip} and +$\chi_{\textit{14Secrypt}}$ \cite{chgw14oip} where \textit{CI} means +\emph{Chaotic Iterations}. +We have firstly proven in~\cite{bcgr11:ip} that, to establish the chaotic nature +of algorithm $\textit{CIPRNG}_f^1$, it is necessary and sufficient that the +asynchronous iterations are strongly connected. We then have proven that it is necessary +and sufficient that the Markov matrix associated to this graph is doubly stochastic, +in order to have a uniform distribution of the outputs. We have finally established +sufficient conditions to guarantee the first property of connectivity. Among the +generated functions, we thus considered for further investigations only the one that +satisfy the second property too. In~\cite{chgw14oip}, we have proposed an algorithmic +method allowing to directly obtain a strongly connected iteration graph having a doubly +stochastic Markov matrix. The research work presented here generalizes this latter article +by updating the iteration domain and the metric. The obtained algorithm owns the same +theoretical properties but with a reduced mixing time. + % % Pour décrire un peu plus précisément le principe de % la génération pseudo-aléatoire, considérons l'espace booléen