X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/586298b57c6e1cec5566bbe692ac21c4c701fd51..7dd748e9a068c99c61fefdcbde3c24e4c9b74bf9:/stopping.tex diff --git a/stopping.tex b/stopping.tex index 5bf7425..d3b4f4d 100644 --- a/stopping.tex +++ b/stopping.tex @@ -1,95 +1,104 @@ -\documentclass{article} -%\usepackage{prentcsmacro} -%\sloppy -\usepackage[a4paper]{geometry} -\geometry{hmargin=3cm, vmargin=3cm } - -\usepackage[latin1]{inputenc} -\usepackage[T1]{fontenc} -\usepackage[english]{babel} -\usepackage{amsmath,amssymb,latexsym,eufrak,euscript} -\usepackage{subfigure,pstricks,pst-node,pst-coil} - - -\usepackage{url,tikz} -\usepackage{pgflibrarysnakes} - -\usepackage{multicol} - -\usetikzlibrary{arrows} -\usetikzlibrary{automata} -\usetikzlibrary{snakes} -\usetikzlibrary{shapes} - -%% \setlength{\oddsidemargin}{15mm} -%% \setlength{\evensidemargin}{15mm} \setlength{\textwidth}{140mm} -%% \setlength{\textheight}{219mm} \setlength{\topmargin}{5mm} -\newtheorem{theorem}{Theorem} -%\newtheorem{definition}[theorem]{Definition} -% %\newtheorem{defis}[thm]{D\'efinitions} - \newtheorem{example}[theorem]{Example} -% %\newtheorem{Exes}[thm]{Exemples} -\newtheorem{lemma}[theorem]{Lemma} -\newtheorem{proposition}[theorem]{Proposition} -\newtheorem{construction}[theorem]{Construction} -\newtheorem{corollary}[theorem]{Corollary} -% \newtheorem{algor}[thm]{Algorithm} -%\newtheorem{propdef}[thm]{Proposition-D\'efinition} -\newcommand{\mlabel}[1]{\label{#1}\marginpar{\fbox{#1}}} -\newcommand{\flsup}[1]{\stackrel{#1}{\longrightarrow}} - -\newcommand{\stirlingtwo}[2]{\genfrac{\lbrace}{\rbrace}{0pt}{}{#1}{#2}} -\newcommand{\stirlingone}[2]{\genfrac{\lbrack}{\rbrack}{0pt}{}{#1}{#2}} - -\newenvironment{algo} -{ \vspace{1em} -\begin{algor}\mbox -\newline \vspace{-0.1em} -\begin{quote}\begin{rm}} -{\end{rm}\end{quote}\end{algor}\vspace{-1.5em}\vspace{2em}} -%\null \hfill $\diamondsuit$ \par\medskip \vspace{1em}} - -\newenvironment{exe} -{\begin{example}\rm } -{\end{example} -%\vspace*{-1.5em} -%\null \hfill $\triangledown$ \par\medskip} -%\null \hfill $\triangledown$ \par\medskip \vspace{1em}} -} - - -\newenvironment{proof} -{ \noindent {\sc Proof.\/} } -{\null \hfill $\Box$ \par\medskip \vspace{1em}} - - - -\newcommand {\tv}[1] {\lVert #1 \rVert_{\rm TV}} -\def \top {1.8} -\def \topt {2.3} -\def \P {\mathbb{P}} -\def \ov {\overline} -\def \ts {\tau_{\rm stop}} -\begin{document} -\label{firstpage} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Mathematical Backgroung} - - - -Let $\pi$, $\mu$ be two distribution on a same set $\Omega$. The total + + + +Let thus be given such kind of map. +This article focuses on studying its iterations according to +the equation~(\ref{eq:asyn}) with a given strategy. +First of all, this can be interpreted as walking into its iteration graph +where the choice of the edge to follow is decided by the strategy. +Notice that the iteration graph is always a subgraph of +${\mathsf{N}}$-cube augmented with all the self-loop, \textit{i.e.}, all the +edges $(v,v)$ for any $v \in \Bool^{\mathsf{N}}$. +Next, if we add probabilities on the transition graph, iterations can be +interpreted as Markov chains. + +\begin{xpl} +Let us consider for instance +the graph $\Gamma(f)$ defined +in \textsc{Figure~\ref{fig:iteration:f*}.} and +the probability function $p$ defined on the set of edges as follows: +$$ +p(e) \left\{ +\begin{array}{ll} += \frac{2}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\ += \frac{1}{6} \textrm{ otherwise.} +\end{array} +\right. +$$ +The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is +\[ +P=\dfrac{1}{6} \left( +\begin{array}{llllllll} +4&1&1&0&0&0&0&0 \\ +1&4&0&0&0&1&0&0 \\ +0&0&4&1&0&0&1&0 \\ +0&1&1&4&0&0&0&0 \\ +1&0&0&0&4&0&1&0 \\ +0&0&0&0&1&4&0&1 \\ +0&0&0&0&1&0&4&1 \\ +0&0&0&1&0&1&0&4 +\end{array} +\right) +\] +\end{xpl} + + +% % Let us first recall the \emph{Total Variation} distance $\tv{\pi-\mu}$, +% % which is defined for two distributions $\pi$ and $\mu$ on the same set +% % $\Bool^n$ by: +% % $$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ +% % It is known that +% % $$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Bool^n}|\pi(x)-\mu(x)|.$$ + +% % Let then $M(x,\cdot)$ be the +% % distribution induced by the $x$-th row of $M$. If the Markov chain +% % induced by +% % $M$ has a stationary distribution $\pi$, then we define +% % $$d(t)=\max_{x\in\Bool^n}\tv{M^t(x,\cdot)-\pi}.$$ +% Intuitively $d(t)$ is the largest deviation between +% the distribution $\pi$ and $M^t(x,\cdot)$, which +% is the result of iterating $t$ times the function. +% Finally, let $\varepsilon$ be a positive number, the \emph{mixing time} +% with respect to $\varepsilon$ is given by +% $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ +% It defines the smallest iteration number +% that is sufficient to obtain a deviation lesser than $\varepsilon$. +% Notice that the upper and lower bounds of mixing times cannot +% directly be computed with eigenvalues formulae as expressed +% in~\cite[Chap. 12]{LevinPeresWilmer2006}. The authors of this latter work +% only consider reversible Markov matrices whereas we do no restrict our +% matrices to such a form. + + + + + + + +This section considers functions $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}} $ +issued from an hypercube where an Hamiltonian path has been removed. +A specific random walk in this modified hypercube is first +introduced. We further detail +a theoretical study on the length of the path +which is sufficient to follow to get a uniform distribution. + + + + + +First of all, let $\pi$, $\mu$ be two distributions on $\Bool^{\mathsf{N}}$. The total variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is defined by -$$\tv{\pi-\mu}=\max_{A\subset \Omega} |\pi(A)-\mu(A)|.$$ It is known that -$$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Omega}|\pi(x)-\mu(x)|.$$ Moreover, if -$\nu$ is a distribution on $\Omega$, one has +$$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$ It is known that +$$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$ Moreover, if +$\nu$ is a distribution on $\Bool^{\mathsf{N}}$, one has $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$ -Let $P$ be the matrix of a markov chain on $\Omega$. $P(x,\cdot)$ is the -distribution induced by the $x$-th row of $P$. If the markov chain induced by +Let $P$ be the matrix of a Markov chain on $\Bool^{\mathsf{N}}$. $P(X,\cdot)$ is the +distribution induced by the $X$-th row of $P$. If the Markov chain induced by $P$ has a stationary distribution $\pi$, then we define -$$d(t)=\max_{x\in\Omega}\tv{P^t(x,\cdot)-\pi},$$ +$$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$ + and $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ @@ -97,184 +106,251 @@ One can prove that $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ -It is known that $d(t+1)\leq d(t)$. -%% A {\it coupling} with transition matrix $P$ is a process $(X_t,Y_t)_{t\geq 0}$ -%% such that both $(X_t)$ and $(Y_t)$ are markov chains of matric $P$; moreover -%% it is required that if $X_s=Y_s$, then for any $t\geq s$, $X_t=Y_t$. -%% A results provides that if $(X_t,Y_t)_{t\geq 0}$ is a coupling, then -%% $$d(t)\leq \max_{x,y} P_{x,y}(\{\tau_{\rm couple} \geq t\}),$$ -%% with $\tau_{\rm couple}=\min_t\{X_t=Y_t\}$. + +% It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il +% un intérêt dans la preuve ensuite.} + + + +%and +% $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ +% One can prove that \JFc{Ou cela a-t-il été fait?} +% $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ + -Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Omega$ valued random +Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^{\mathsf{N}}$ valued random variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq -\omega^{t+1}$ such that $\{tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. - -Let $(X_t)_{t\in \mathbb{N}}$ be a markov chain and $f(X_{t-1},Z_t)$ a -random mapping representation of the markov chain. A {\it randomized - stopping time} for the markov chain is a stopping time for -$(Z_t)_{t\in\mathbb{N}}$. It he markov chain is irreductible and has $\pi$ -as stationary distribution, then a {\it stationay time} $\tau$ is a -randomized stopping time (possibily depending on the starting position $x$), +(\Bool^{\mathsf{N}})^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. +In other words, the event $\{\tau = t \}$ only depends on the values of +$(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$. + + +Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a +random mapping representation of the Markov chain. A {\it randomized + stopping time} for the Markov chain is a stopping time for +$(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$ +as stationary distribution, then a {\it stationary time} $\tau$ is a +randomized stopping time (possibly depending on the starting position $X$), such that the distribution of $X_\tau$ is $\pi$: -$$\P_x(X_\tau=y)=\pi(y).$$ +$$\P_X(X_\tau=Y)=\pi(Y).$$ -\begin{proposition} -If $\tau$ is a strong stationary time, then $d(t)\leq \max_{x\in\Omega} -\P_x(\tau > t)$. -\end{proposition} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Random walk on the modified Hypercube} +\begin{Theo} +If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}} +\P_X(\tau > t)$. +\end{Theo} -Let $\Omega=\{0,1\}^N$ be the set of words of length $N$. Let $E=\{(x,y)\mid -x\in \Omega, y\in \Omega,\ x=y \text{ or } x\oplus y \in 0^*10^*\}$. Let $h$ -be a function from $\Omega$ into $\{1,\ldots,N\}$. -We denote by $E_h$ the set $E\setminus\{(x,y)\mid x\oplus y = -0^{N-h(x)}10^{h(x)-1}\}$. We define the matrix $P_h$ has follows: -$$\left\{ -\begin{array}{ll} -P_h(x,y)=0 & \text{ if } (x,y)\notin E_h\\ -P_h(x,x)=\frac{1}{2}+\frac{1}{2N} & \\ -P_h(x,x)=\frac{1}{2N} & \text{otherwise}\\ +%Let $\Bool^n$ be the set of words of length $n$. +Let $E=\{(X,Y)\mid +X\in \Bool^{\mathsf{N}}, Y\in \Bool^{\mathsf{N}},\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$. +In other words, $E$ is the set of all the edges in the classical +${\mathsf{N}}$-cube. +Let $h$ be a function from $\Bool^{\mathsf{N}}$ into $\llbracket 1, {\mathsf{N}} \rrbracket$. +Intuitively speaking $h$ aims at memorizing for each node +$X \in \Bool^{\mathsf{N}}$ which edge is removed in the Hamiltonian cycle, +\textit{i.e.} which bit in $\llbracket 1, {\mathsf{N}} \rrbracket$ +cannot be switched. + + + +We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y = +0^{{\mathsf{N}}-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube, +\textit{i.e.}, the ${\mathsf{N}}$-cube where the Hamiltonian cycle $h$ +has been removed. +We define the Markov matrix $P_h$ for each line $X$ and +each column $Y$ as follows: +\begin{equation} +\left\{ +\begin{array}{ll} +P_h(X,X)=\frac{1}{2}+\frac{1}{2{\mathsf{N}}} & \\ +P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\ +P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} \end{array} \right. -$$ +\label{eq:Markov:rairo} +\end{equation} -We denote by $\ov{h}$ the function from $\Omega$ into $\omega$ defined -by $x\oplus\ov{h}(x)=0^{N-h(x)}10^{h(x)-1}.$ -The function $\ov{h}$ is said {\it square-free} if for every $x\in E$, -$\ov{h}(\ov{h}(x))\neq x$. +We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function +such that for any $X \in \Bool^{\mathsf{N}} $, +$(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$. +The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$, +$\ov{h}(\ov{h}(X))\neq X$. -\begin{lemma}\label{lm:h} -If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(x))\neq h(x)$. -\end{lemma} +\begin{Lemma}\label{lm:h} +If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$. +\end{Lemma} \begin{proof} - +Let $\ov{h}$ be bijective. +Let $k\in \llbracket 1, {\mathsf{N}} \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$. +Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and +$\ov{h}^{-1}(X)\oplus X = 0^{{\mathsf{N}}-k}10^{k-1}$. +Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$. +By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and +$X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1} = 0^{{\mathsf{N}}-k}10^{k-1}$. +Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$. +This contradicts the square-freeness of $\ov{h}$. \end{proof} -Let $Z$ be a random variable over -$\{1,\ldots,N\}\times\{0,1\}$ uniformaly distributed. For $X\in \Omega$, we -define, with $Z=(i,x)$, +Let $Z$ be a random variable that is uniformly distributed over +$\llbracket 1, {\mathsf{N}} \rrbracket \times \Bool$. +For $X\in \Bool^{\mathsf{N}}$, we +define, with $Z=(i,b)$, $$ \left\{ \begin{array}{ll} -f(X,Z)=X\oplus (0^{N-i}10^{i-1}) & \text{if } x=1 \text{ and } i\neq h(X),\\ +f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\ f(X,Z)=X& \text{otherwise.} \end{array}\right. $$ -The pair $f,Z$ is a random mapping representation of $P_h$. - +The Markov chain is thus defined as +$$ +X_t= f(X_{t-1},Z_t) +$$ %%%%%%%%%%%%%%%%%%%%%%%%%%%ù -\section{Stopping time} - -An integer $\ell\in\{1,\ldots,N\}$ is said {\it fair} at time $t$ if there -exists $0\leq j <t$ such that $Z_j=(\ell,\cdot)$ and $h(X_j)\neq \ell$. - +%\section{Stopping time} + +An integer $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ is said {\it fair} +at time $t$ if there +exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$. +In other words, there exist a date $j$ before $t$ where +the first element of the random variable $Z$ is exactly $l$ +(\textit{i.e.}, $l$ is the strategy at date $j$) +and where the configuration $X_j$ allows to traverse the edge $l$. -Let $\ts$ be the first time all the elements of $\{1,\ldots,N\}$ +Let $\ts$ be the first time all the elements of $\llbracket 1, {\mathsf{N}} \rrbracket$ are fair. The integer $\ts$ is a randomized stopping time for -the markov chain $(X_t)$. +the Markov chain $(X_t)$. -\begin{lemma} -The integer $\ts$ is a strong stationnary time. -\end{lemma} +\begin{Lemma} +The integer $\ts$ is a strong stationary time. +\end{Lemma} \begin{proof} Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable -$Z_{\tau_\ell-1}$ is of the form $(\ell,\delta)$ with $\delta\in\{0,1\}$ and -$\delta=1$ with probability $\frac{1}{2}$ and $\delta=0$ with probability +$Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and +such that +$b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability $\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th -bit of $X_{\tau_\ell}$ is $\delta$. By symetry, for $t\geq \tau_\ell$, the +bit of $X_{\tau_\ell}$ +is $0$ or $1$ with the same probability ($\frac{1}{2}$). + + Moving next in the chain, at each step, +the $l$-th bit is switched from $0$ to $1$ or from $1$ to $0$ each time with +the same probability. Therefore, for $t\geq \tau_\ell$, the $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the -lemma. -\end{proof} +lemma.\end{proof} -\begin{proposition} \label{prop:stop} +\begin{Theo} \label{prop:stop} If $\ov{h}$ is bijective and square-free, then -$E[\ts]\leq 8N^2+ N\ln (N+1)$. -\end{proposition} +$E[\ts]\leq 8{\mathsf{N}}^2+ {\mathsf{N}}\ln ({\mathsf{N}}+1)$. +\end{Theo} -For each $x\in \Omega$ and $\ell\in\{1,\ldots,N\}$, let $S_{x,\ell}$ be the -random variable counting the number of steps done until reaching from $x$ a state where -$\ell$ is fair. More formaly -$$S_{x,\ell}=\min \{m \geq 1\mid h(X_m)\neq \ell\text{ and }Z_m=\ell\text{ and } X_0=x\}.$$ +For each $X\in \Bool^{\mathsf{N}}$ and $\ell\in\llbracket 1,{\mathsf{N}}\rrbracket$, +let $S_{X,\ell}$ be the +random variable that counts the number of steps +from $X$ until we reach a configuration where +$\ell$ is fair. More formally +$$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$ We denote by -$$\lambda_h=\max_{x,\ell} S_{x,\ell}.$$ +$$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$ + +\begin{Lemma}\label{prop:lambda} +If $\ov{h}$ is a square-free bijective function, then the inequality +$E[\lambda_h]\leq 8{\mathsf{N}}^2$ is established. -\begin{lemma}\label{prop:lambda} -If $\ov{h}$ is a square-free bijective function, then one has $E[\lambda_h]\leq 8N^2.$ -\end{lemma} +\end{Lemma} \begin{proof} -For evey $x$, every $\ell$, one has $\P(S_{x,\ell})\leq 2)\geq -\frac{1}{4N^2}$. Indeed, if $h(x)\neq \ell$, then -$\P(S_{x,\ell}=1)=\frac{1}{2N}\geq \frac{1}{4N^2}$. If $h(x)=\ell$, then -$\P(S_{x,\ell}=1)=0$. Let $X_0=x$. Since $\ov{h}$ is square-free, -$\ov{h}(\ov{h}^{-1}(x))\neq x$. It follows that $(x,\ov{h}^{-1}(x))\in E_h$. -Thefore $P(X_1=\ov{h}^{-1}(x))=\frac{1}{2N}$. Now, -by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(x))\neq h(x)$. Therefore -$\P(S_{x,\ell}=2\mid X_1=\ov{h}^{-1}(x))=\frac{1}{2N}$, proving that -$\P(S_{x,\ell}\leq 2)\geq \frac{1}{4N^2}$. - -Therefore, $\P(S_{x,\ell}\geq 2)\leq 1-\frac{1}{4N^2}$. By induction, one -has, for every $i$, $\P(S_{x,\ell}\geq 2i)\leq -\left(1-\frac{1}{4N^2}\right)^i$. +For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq +\frac{1}{4{\mathsf{N}}^2}$. +Let $X_0= X$. +Indeed, +\begin{itemize} +\item if $h(X)\neq \ell$, then +$\P(S_{X,\ell}=1)=\frac{1}{2{\mathsf{N}}}\geq \frac{1}{4{\mathsf{N}}^2}$. +\item otherwise, $h(X)=\ell$, then +$\P(S_{X,\ell}=1)=0$. +But in this case, intutively, it is possible to move +from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in +$\ov{h}^{-1}(X)$ the $l$-th bit can be switched. +More formally, +since $\ov{h}$ is square-free, +$\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows +that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have +$P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h}, +$h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid +X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq +\frac{1}{4{\mathsf{N}}^2}$. +\end{itemize} + + + + +Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{4{\mathsf{N}}^2}$. By induction, one +has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq +\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i$. Moreover, -since $S_{x,\ell}$ is positive, it is known~\cite[lemma 2.9]{}, that -$$E[S_{x,\ell}]=\sum_{i=1}^{+\infty}\P(S_{x,\ell}\geq i).$$ -Since $\P(S_{x,\ell}\geq i)\geq \P(S_{x,\ell}\geq i+1)$, one has -$$E[S_{x,\ell}]=\sum_{i=1}^{+\infty}\P(S_{x,\ell}\geq i)\leq -\P(S_{x,\ell}\geq 1)+2 \sum_{i=1}^{+\infty}\P(S_{x,\ell}\geq 2i).$$ +since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that +$$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$ +Since $\P(S_{X,\ell}\geq i)\geq \P(S_{X,\ell}\geq i+1)$, one has +$$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq +\P(S_{X,\ell}\geq 1)+\P(S_{X,\ell}\geq 2)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$ Consequently, -$$E[S_{x,\ell}]\leq 1+2 -\sum_{i=1}^{+\infty}\left(1-\frac{1}{4N^2}\right)^i=1+2(4N^2-1)=8N^2-2,$$ +$$E[S_{X,\ell}]\leq 1+1+2 +\sum_{i=1}^{+\infty}\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i=2+2(4{\mathsf{N}}^2-1)=8{\mathsf{N}}^2,$$ which concludes the proof. \end{proof} -Let $\ts^\prime$ be the first time that there are exactly $N-1$ fair +Let $\ts^\prime$ be the first time that there are exactly ${\mathsf{N}}-1$ fair elements. -\begin{lemma}\label{lm:stopprime} -One has $E[\ts^\prime]\leq N \ln (N+1).$ -\end{lemma} +\begin{Lemma}\label{lm:stopprime} +One has $E[\ts^\prime]\leq {\mathsf{N}} \ln ({\mathsf{N}}+1).$ +\end{Lemma} \begin{proof} This is a classical Coupon Collector's like problem. Let $W_i$ be the -random variable counting the number of moves done in the markov chain while -we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{N-1}W_i$. - But when we are at position $x$ with $i-1$ fair bits, the probability of - obtaining a new fair bit is either $1-\frac{i-1}{N}$ if $h(x)$ is fair, - or $1-\frac{i-2}{N}$ if $h(x)$ is not fair. It follows that -$E[W_i]\leq \frac{N}{N-i+2}$. Therefore -$$E[\ts^\prime]=\sum_{i=1}^{N-1}E[W_i]\leq N\sum_{i=1}^{N-1} - \frac{1}{N-i+2}=N\sum_{i=3}^{N+1}\frac{1}{i}.$$ - -But $\sum_{i=1}^{N+1}\frac{1}{i}\leq 1+\ln(N+1)$. It follows that -$1+\frac{1}{2}+\sum_{i=3}^{N+1}\frac{1}{i}\leq 1+\ln(N+1).$ +random variable counting the number of moves done in the Markov chain while +we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}-1}W_i$. + But when we are at position $X$ with $i-1$ fair bits, the probability of + obtaining a new fair bit is either $1-\frac{i-1}{{\mathsf{N}}}$ if $h(X)$ is fair, + or $1-\frac{i-2}{{\mathsf{N}}}$ if $h(X)$ is not fair. It follows that +$E[W_i]\leq \frac{{\mathsf{N}}}{{\mathsf{N}}-i+2}$. Therefore +$$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}-1}E[W_i]\leq {\mathsf{N}}\sum_{i=1}^{{\mathsf{N}}-1} + \frac{1}{{\mathsf{N}}-i+2}={\mathsf{N}}\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}.$$ + +But $\sum_{i=1}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1)$. It follows that +$1+\frac{1}{2}+\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1).$ Consequently, -$E[\ts^\prime]\leq N (-\frac{1}{2}+\ln(N+1))\leq N\ln(N+1)$. +$E[\ts^\prime]\leq {\mathsf{N}} (-\frac{1}{2}+\ln({\mathsf{N}}+1))\leq {\mathsf{N}}\ln({\mathsf{N}}+1)$. \end{proof} -One can now prove Proposition~\ref{prop:stop}. +One can now prove Theorem~\ref{prop:stop}. \begin{proof} One has $\ts\leq \ts^\prime+\lambda_h$. Therefore, -Proposition~\ref{prop:stop} is a direct application of +Theorem~\ref{prop:stop} is a direct application of lemma~\ref{prop:lambda} and~\ref{lm:stopprime}. \end{proof} -\end{document} +Notice that the calculus of the stationary time upper bound is obtained +under the following constraint: for each vertex in the $\mathsf{N}$-cube +there are one ongoing arc and one outgoing arc that are removed. +The calculus does not consider (balanced) hamiltonian cycles, which +are more regular and more binding than this constraint. +In this later context, we claim that the upper bound for the stopping time +should be reduced.