X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/586298b57c6e1cec5566bbe692ac21c4c701fd51..e4f6e60e4d2af88e0e16f2d680cf4fe3725ea1fc:/stopping.tex?ds=inline diff --git a/stopping.tex b/stopping.tex index 5bf7425..25e458d 100644 --- a/stopping.tex +++ b/stopping.tex @@ -1,280 +1,381 @@ -\documentclass{article} -%\usepackage{prentcsmacro} -%\sloppy -\usepackage[a4paper]{geometry} -\geometry{hmargin=3cm, vmargin=3cm } - -\usepackage[latin1]{inputenc} -\usepackage[T1]{fontenc} -\usepackage[english]{babel} -\usepackage{amsmath,amssymb,latexsym,eufrak,euscript} -\usepackage{subfigure,pstricks,pst-node,pst-coil} - - -\usepackage{url,tikz} -\usepackage{pgflibrarysnakes} - -\usepackage{multicol} - -\usetikzlibrary{arrows} -\usetikzlibrary{automata} -\usetikzlibrary{snakes} -\usetikzlibrary{shapes} - -%% \setlength{\oddsidemargin}{15mm} -%% \setlength{\evensidemargin}{15mm} \setlength{\textwidth}{140mm} -%% \setlength{\textheight}{219mm} \setlength{\topmargin}{5mm} -\newtheorem{theorem}{Theorem} -%\newtheorem{definition}[theorem]{Definition} -% %\newtheorem{defis}[thm]{D\'efinitions} - \newtheorem{example}[theorem]{Example} -% %\newtheorem{Exes}[thm]{Exemples} -\newtheorem{lemma}[theorem]{Lemma} -\newtheorem{proposition}[theorem]{Proposition} -\newtheorem{construction}[theorem]{Construction} -\newtheorem{corollary}[theorem]{Corollary} -% \newtheorem{algor}[thm]{Algorithm} -%\newtheorem{propdef}[thm]{Proposition-D\'efinition} -\newcommand{\mlabel}[1]{\label{#1}\marginpar{\fbox{#1}}} -\newcommand{\flsup}[1]{\stackrel{#1}{\longrightarrow}} - -\newcommand{\stirlingtwo}[2]{\genfrac{\lbrace}{\rbrace}{0pt}{}{#1}{#2}} -\newcommand{\stirlingone}[2]{\genfrac{\lbrack}{\rbrack}{0pt}{}{#1}{#2}} - -\newenvironment{algo} -{ \vspace{1em} -\begin{algor}\mbox -\newline \vspace{-0.1em} -\begin{quote}\begin{rm}} -{\end{rm}\end{quote}\end{algor}\vspace{-1.5em}\vspace{2em}} -%\null \hfill $\diamondsuit$ \par\medskip \vspace{1em}} - -\newenvironment{exe} -{\begin{example}\rm } -{\end{example} -%\vspace*{-1.5em} -%\null \hfill $\triangledown$ \par\medskip} -%\null \hfill $\triangledown$ \par\medskip \vspace{1em}} -} - - -\newenvironment{proof} -{ \noindent {\sc Proof.\/} } -{\null \hfill $\Box$ \par\medskip \vspace{1em}} - - - -\newcommand {\tv}[1] {\lVert #1 \rVert_{\rm TV}} -\def \top {1.8} -\def \topt {2.3} -\def \P {\mathbb{P}} -\def \ov {\overline} -\def \ts {\tau_{\rm stop}} -\begin{document} -\label{firstpage} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Mathematical Backgroung} - - - -Let $\pi$, $\mu$ be two distribution on a same set $\Omega$. The total + + + +Let thus be given such kind of map. +This article focuses on studying its iterations according to +the equation~(\ref{eq:asyn}) with a given strategy. +First of all, this can be interpreted as walking into its iteration graph +where the choice of the edge to follow is decided by the strategy. +Notice that the iteration graph is always a subgraph of +${\mathsf{N}}$-cube augmented with all the self-loop, \textit{i.e.}, all the +edges $(v,v)$ for any $v \in \Bool^{\mathsf{N}}$. +Next, if we add probabilities on the transition graph, iterations can be +interpreted as Markov chains. + +\begin{xpl} +Let us consider for instance +the graph $\Gamma(f)$ defined +in \textsc{Figure~\ref{fig:iteration:f*}.} and +the probability function $p$ defined on the set of edges as follows: +$$ +p(e) \left\{ +\begin{array}{ll} += \frac{1}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\ += \frac{1}{3} \textrm{ otherwise.} +\end{array} +\right. +$$ +The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is +\[ +P=\dfrac{1}{3} \left( +\begin{array}{llllllll} +1&1&1&0&0&0&0&0 \\ +1&1&0&0&0&1&0&0 \\ +0&0&1&1&0&0&1&0 \\ +0&1&1&1&0&0&0&0 \\ +1&0&0&0&1&0&1&0 \\ +0&0&0&0&1&1&0&1 \\ +0&0&0&0&1&0&1&1 \\ +0&0&0&1&0&1&0&1 +\end{array} +\right) +\] +\end{xpl} + + +% % Let us first recall the \emph{Total Variation} distance $\tv{\pi-\mu}$, +% % which is defined for two distributions $\pi$ and $\mu$ on the same set +% % $\Bool^n$ by: +% % $$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ +% % It is known that +% % $$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Bool^n}|\pi(x)-\mu(x)|.$$ + +% % Let then $M(x,\cdot)$ be the +% % distribution induced by the $x$-th row of $M$. If the Markov chain +% % induced by +% % $M$ has a stationary distribution $\pi$, then we define +% % $$d(t)=\max_{x\in\Bool^n}\tv{M^t(x,\cdot)-\pi}.$$ +% Intuitively $d(t)$ is the largest deviation between +% the distribution $\pi$ and $M^t(x,\cdot)$, which +% is the result of iterating $t$ times the function. +% Finally, let $\varepsilon$ be a positive number, the \emph{mixing time} +% with respect to $\varepsilon$ is given by +% $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ +% It defines the smallest iteration number +% that is sufficient to obtain a deviation lesser than $\varepsilon$. +% Notice that the upper and lower bounds of mixing times cannot +% directly be computed with eigenvalues formulae as expressed +% in~\cite[Chap. 12]{LevinPeresWilmer2006}. The authors of this latter work +% only consider reversible Markov matrices whereas we do no restrict our +% matrices to such a form. + + + + + + + +This section considers functions $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}} $ +issued from an hypercube where an Hamiltonian path has been removed. +A specific random walk in this modified hypercube is first +introduced. We further detail +a theoretical study on the length of the path +which is sufficient to follow to get a uniform distribution. + + + + + +First of all, let $\pi$, $\mu$ be two distributions on $\Bool^{\mathsf{N}}$. The total variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is defined by -$$\tv{\pi-\mu}=\max_{A\subset \Omega} |\pi(A)-\mu(A)|.$$ It is known that -$$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Omega}|\pi(x)-\mu(x)|.$$ Moreover, if -$\nu$ is a distribution on $\Omega$, one has +$$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$ It is known that +$$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$ Moreover, if +$\nu$ is a distribution on $\Bool^{\mathsf{N}}$, one has $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$ -Let $P$ be the matrix of a markov chain on $\Omega$. $P(x,\cdot)$ is the -distribution induced by the $x$-th row of $P$. If the markov chain induced by +Let $P$ be the matrix of a Markov chain on $\Bool^{\mathsf{N}}$. $P(X,\cdot)$ is the +distribution induced by the $X$-th row of $P$. If the Markov chain induced by $P$ has a stationary distribution $\pi$, then we define -$$d(t)=\max_{x\in\Omega}\tv{P^t(x,\cdot)-\pi},$$ +$$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$ + and $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ -One can prove that +% One can prove that -$$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ +% $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ -It is known that $d(t+1)\leq d(t)$. -%% A {\it coupling} with transition matrix $P$ is a process $(X_t,Y_t)_{t\geq 0}$ -%% such that both $(X_t)$ and $(Y_t)$ are markov chains of matric $P$; moreover -%% it is required that if $X_s=Y_s$, then for any $t\geq s$, $X_t=Y_t$. -%% A results provides that if $(X_t,Y_t)_{t\geq 0}$ is a coupling, then -%% $$d(t)\leq \max_{x,y} P_{x,y}(\{\tau_{\rm couple} \geq t\}),$$ -%% with $\tau_{\rm couple}=\min_t\{X_t=Y_t\}$. +% It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il +% un intérêt dans la preuve ensuite.} -Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Omega$ valued random + + +%and +% $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ +% One can prove that \JFc{Ou cela a-t-il été fait?} +% $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ + + + +Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^{\mathsf{N}}$ valued random variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq -\omega^{t+1}$ such that $\{tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. - -Let $(X_t)_{t\in \mathbb{N}}$ be a markov chain and $f(X_{t-1},Z_t)$ a -random mapping representation of the markov chain. A {\it randomized - stopping time} for the markov chain is a stopping time for -$(Z_t)_{t\in\mathbb{N}}$. It he markov chain is irreductible and has $\pi$ -as stationary distribution, then a {\it stationay time} $\tau$ is a -randomized stopping time (possibily depending on the starting position $x$), +(\Bool^{\mathsf{N}})^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. +In other words, the event $\{\tau = t \}$ only depends on the values of +$(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$. + + +Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a +random mapping representation of the Markov chain. A {\it randomized + stopping time} for the Markov chain is a stopping time for +$(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$ +as stationary distribution, then a {\it stationary time} $\tau$ is a +randomized stopping time (possibly depending on the starting position $X$), such that the distribution of $X_\tau$ is $\pi$: -$$\P_x(X_\tau=y)=\pi(y).$$ +$$\P_X(X_\tau=Y)=\pi(Y).$$ + + +\begin{Theo} +If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}} +\P_X(\tau > t)$. +\end{Theo} -\begin{proposition} -If $\tau$ is a strong stationary time, then $d(t)\leq \max_{x\in\Omega} -\P_x(\tau > t)$. -\end{proposition} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Random walk on the modified Hypercube} +%Let $\Bool^n$ be the set of words of length $n$. +Let $E=\{(X,Y)\mid +X\in \Bool^{\mathsf{N}}, Y\in \Bool^{\mathsf{N}},\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$. +In other words, $E$ is the set of all the edges in the classical +${\mathsf{N}}$-cube. +Let $h$ be a function from $\Bool^{\mathsf{N}}$ into $\llbracket 1, {\mathsf{N}} \rrbracket$. +Intuitively speaking $h$ aims at memorizing for each node +$X \in \Bool^{\mathsf{N}}$ which edge is removed in the Hamiltonian cycle, +\textit{i.e.} which bit in $\llbracket 1, {\mathsf{N}} \rrbracket$ +cannot be switched. -Let $\Omega=\{0,1\}^N$ be the set of words of length $N$. Let $E=\{(x,y)\mid -x\in \Omega, y\in \Omega,\ x=y \text{ or } x\oplus y \in 0^*10^*\}$. Let $h$ -be a function from $\Omega$ into $\{1,\ldots,N\}$. -We denote by $E_h$ the set $E\setminus\{(x,y)\mid x\oplus y = -0^{N-h(x)}10^{h(x)-1}\}$. We define the matrix $P_h$ has follows: + +We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y = +0^{{\mathsf{N}}-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube, +\textit{i.e.}, the ${\mathsf{N}}$-cube where the Hamiltonian cycle $h$ +has been removed. + +We define the Markov matrix $P_h$ for each line $X$ and +each column $Y$ as follows: $$\left\{ \begin{array}{ll} -P_h(x,y)=0 & \text{ if } (x,y)\notin E_h\\ -P_h(x,x)=\frac{1}{2}+\frac{1}{2N} & \\ -P_h(x,x)=\frac{1}{2N} & \text{otherwise}\\ - +P_h(X,X)=\frac{1}{{\mathsf{N}}} & \\ +P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\ +P_h(X,Y)=\frac{1}{{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} \end{array} \right. $$ -We denote by $\ov{h}$ the function from $\Omega$ into $\omega$ defined -by $x\oplus\ov{h}(x)=0^{N-h(x)}10^{h(x)-1}.$ -The function $\ov{h}$ is said {\it square-free} if for every $x\in E$, -$\ov{h}(\ov{h}(x))\neq x$. +We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function +such that for any $X \in \Bool^{\mathsf{N}} $, +$(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$. +The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$, +$\ov{h}(\ov{h}(X))\neq X$. -\begin{lemma}\label{lm:h} -If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(x))\neq h(x)$. -\end{lemma} +\begin{Lemma}\label{lm:h} +If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$. +\end{Lemma} \begin{proof} - +Let $\ov{h}$ be bijective. +Let $k\in \llbracket 1, {\mathsf{N}} \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$. +Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and +$\ov{h}^{-1}(X)\oplus X = 0^{{\mathsf{N}}-k}10^{k-1}$. +Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$. +By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and +$X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1} = 0^{{\mathsf{N}}-k}10^{k-1}$. +Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$. +This contradicts the square-freeness of $\ov{h}$. \end{proof} -Let $Z$ be a random variable over -$\{1,\ldots,N\}\times\{0,1\}$ uniformaly distributed. For $X\in \Omega$, we -define, with $Z=(i,x)$, +Let $Z$ be a random variable that is uniformly distributed over +$\llbracket 1, {\mathsf{N}}$. +For $X\in \Bool^{\mathsf{N}}$, we +define, with $Z=i$, $$ \left\{ \begin{array}{ll} -f(X,Z)=X\oplus (0^{N-i}10^{i-1}) & \text{if } x=1 \text{ and } i\neq h(X),\\ +%f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\ +f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if $i\neq h(X)$},\\ f(X,Z)=X& \text{otherwise.} \end{array}\right. $$ -The pair $f,Z$ is a random mapping representation of $P_h$. - - +The Markov chain is thus defined as +$$ +X_t= f(X_{t-1},Z_t) +$$ -%%%%%%%%%%%%%%%%%%%%%%%%%%%ù -\section{Stopping time} -An integer $\ell\in\{1,\ldots,N\}$ is said {\it fair} at time $t$ if there -exists $0\leq j