X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/5e3dba6ade7cdb2d622eec1fd7d7ef5a0a168b4d..2644c7bc8564e7829d6f0d9b2e2a66e6460aec67:/stopping.tex diff --git a/stopping.tex b/stopping.tex index e413688..eec08aa 100644 --- a/stopping.tex +++ b/stopping.tex @@ -289,10 +289,10 @@ More formally, since $\ov{h}$ is square-free, $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have -$P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\MATHSF{N}}}$. Now, by Lemma~\ref{lm:h}, +$P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid -X_1=\ov{h}^{-1}(X))=\frac{1}{2{\MATHSF{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq -\frac{1}{4{\MATHSF{N}}^2}$. +X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq +\frac{1}{4{\mathsf{N}}^2}$. \end{itemize}