X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/5e3dba6ade7cdb2d622eec1fd7d7ef5a0a168b4d..9fc003099dc86caaa2ccf0645be2764c81418534:/stopping.tex?ds=sidebyside diff --git a/stopping.tex b/stopping.tex index e413688..d3b4f4d 100644 --- a/stopping.tex +++ b/stopping.tex @@ -165,14 +165,16 @@ has been removed. We define the Markov matrix $P_h$ for each line $X$ and each column $Y$ as follows: -$$\left\{ +\begin{equation} +\left\{ \begin{array}{ll} P_h(X,X)=\frac{1}{2}+\frac{1}{2{\mathsf{N}}} & \\ P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\ P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} \end{array} \right. -$$ +\label{eq:Markov:rairo} +\end{equation} We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function such that for any $X \in \Bool^{\mathsf{N}} $, @@ -289,10 +291,10 @@ More formally, since $\ov{h}$ is square-free, $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have -$P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\MATHSF{N}}}$. Now, by Lemma~\ref{lm:h}, +$P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid -X_1=\ov{h}^{-1}(X))=\frac{1}{2{\MATHSF{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq -\frac{1}{4{\MATHSF{N}}^2}$. +X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq +\frac{1}{4{\mathsf{N}}^2}$. \end{itemize}