X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/8845f0ad0e1fda56b399e8c451712a1cd6b3afe4..b14071948f5418eda195be08e12edc746770f7de:/stopping.tex diff --git a/stopping.tex b/stopping.tex index 19f1feb..d3b4f4d 100644 --- a/stopping.tex +++ b/stopping.tex @@ -1,4 +1,81 @@ -This section considers functions $f: \Bool^n \rightarrow \Bool^n $ + + + +Let thus be given such kind of map. +This article focuses on studying its iterations according to +the equation~(\ref{eq:asyn}) with a given strategy. +First of all, this can be interpreted as walking into its iteration graph +where the choice of the edge to follow is decided by the strategy. +Notice that the iteration graph is always a subgraph of +${\mathsf{N}}$-cube augmented with all the self-loop, \textit{i.e.}, all the +edges $(v,v)$ for any $v \in \Bool^{\mathsf{N}}$. +Next, if we add probabilities on the transition graph, iterations can be +interpreted as Markov chains. + +\begin{xpl} +Let us consider for instance +the graph $\Gamma(f)$ defined +in \textsc{Figure~\ref{fig:iteration:f*}.} and +the probability function $p$ defined on the set of edges as follows: +$$ +p(e) \left\{ +\begin{array}{ll} += \frac{2}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\ += \frac{1}{6} \textrm{ otherwise.} +\end{array} +\right. +$$ +The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is +\[ +P=\dfrac{1}{6} \left( +\begin{array}{llllllll} +4&1&1&0&0&0&0&0 \\ +1&4&0&0&0&1&0&0 \\ +0&0&4&1&0&0&1&0 \\ +0&1&1&4&0&0&0&0 \\ +1&0&0&0&4&0&1&0 \\ +0&0&0&0&1&4&0&1 \\ +0&0&0&0&1&0&4&1 \\ +0&0&0&1&0&1&0&4 +\end{array} +\right) +\] +\end{xpl} + + +% % Let us first recall the \emph{Total Variation} distance $\tv{\pi-\mu}$, +% % which is defined for two distributions $\pi$ and $\mu$ on the same set +% % $\Bool^n$ by: +% % $$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ +% % It is known that +% % $$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Bool^n}|\pi(x)-\mu(x)|.$$ + +% % Let then $M(x,\cdot)$ be the +% % distribution induced by the $x$-th row of $M$. If the Markov chain +% % induced by +% % $M$ has a stationary distribution $\pi$, then we define +% % $$d(t)=\max_{x\in\Bool^n}\tv{M^t(x,\cdot)-\pi}.$$ +% Intuitively $d(t)$ is the largest deviation between +% the distribution $\pi$ and $M^t(x,\cdot)$, which +% is the result of iterating $t$ times the function. +% Finally, let $\varepsilon$ be a positive number, the \emph{mixing time} +% with respect to $\varepsilon$ is given by +% $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ +% It defines the smallest iteration number +% that is sufficient to obtain a deviation lesser than $\varepsilon$. +% Notice that the upper and lower bounds of mixing times cannot +% directly be computed with eigenvalues formulae as expressed +% in~\cite[Chap. 12]{LevinPeresWilmer2006}. The authors of this latter work +% only consider reversible Markov matrices whereas we do no restrict our +% matrices to such a form. + + + + + + + +This section considers functions $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}} $ issued from an hypercube where an Hamiltonian path has been removed. A specific random walk in this modified hypercube is first introduced. We further detail @@ -9,20 +86,31 @@ which is sufficient to follow to get a uniform distribution. -First of all, let $\pi$, $\mu$ be two distributions on $\Bool^n$. The total +First of all, let $\pi$, $\mu$ be two distributions on $\Bool^{\mathsf{N}}$. The total variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is defined by -$$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ It is known that -$$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^n}|\pi(X)-\mu(X)|.$$ Moreover, if -$\nu$ is a distribution on $\Bool^n$, one has +$$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$ It is known that +$$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$ Moreover, if +$\nu$ is a distribution on $\Bool^{\mathsf{N}}$, one has $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$ -Let $P$ be the matrix of a Markov chain on $\Bool^n$. $P(x,\cdot)$ is the -distribution induced by the $x$-th row of $P$. If the Markov chain induced by +Let $P$ be the matrix of a Markov chain on $\Bool^{\mathsf{N}}$. $P(X,\cdot)$ is the +distribution induced by the $X$-th row of $P$. If the Markov chain induced by $P$ has a stationary distribution $\pi$, then we define -$$d(t)=\max_{X\in\Bool^n}\tv{P^t(X,\cdot)-\pi}.$$ -It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il -un intérêt dans la preuve ensuite.} +$$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$ + +and + +$$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ +One can prove that + +$$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ + + + + +% It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il +% un intérêt dans la preuve ensuite.} @@ -33,16 +121,14 @@ un int -Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^n$ valued random +Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^{\mathsf{N}}$ valued random variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq -(\Bool^n)^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. +(\Bool^{\mathsf{N}})^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. In other words, the event $\{\tau = t \}$ only depends on the values of $(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$. -\JFC{Je ne comprends pas la definition de randomized stopping time, Peut-on enrichir ?} - Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a random mapping representation of the Markov chain. A {\it randomized stopping time} for the Markov chain is a stopping time for @@ -53,46 +139,47 @@ such that the distribution of $X_\tau$ is $\pi$: $$\P_X(X_\tau=Y)=\pi(Y).$$ -\JFC{Ou ceci a-t-il ete prouvé. On ne définit pas ce qu'est un strong stationary time.} \begin{Theo} -If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^n} +If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}} \P_X(\tau > t)$. \end{Theo} %Let $\Bool^n$ be the set of words of length $n$. Let $E=\{(X,Y)\mid -X\in \Bool^n, Y\in \Bool^n,\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$. +X\in \Bool^{\mathsf{N}}, Y\in \Bool^{\mathsf{N}},\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$. In other words, $E$ is the set of all the edges in the classical -$n$-cube. -Let $h$ be a function from $\Bool^n$ into $\llbracket 1, n \rrbracket$. +${\mathsf{N}}$-cube. +Let $h$ be a function from $\Bool^{\mathsf{N}}$ into $\llbracket 1, {\mathsf{N}} \rrbracket$. Intuitively speaking $h$ aims at memorizing for each node -$X \in \Bool^n$ which edge is removed in the Hamiltonian cycle, -\textit{i.e.} which bit in $\llbracket 1, n \rrbracket$ +$X \in \Bool^{\mathsf{N}}$ which edge is removed in the Hamiltonian cycle, +\textit{i.e.} which bit in $\llbracket 1, {\mathsf{N}} \rrbracket$ cannot be switched. We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y = -0^{n-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube, -\textit{i.e.}, the $n$-cube where the Hamiltonian cycle $h$ +0^{{\mathsf{N}}-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube, +\textit{i.e.}, the ${\mathsf{N}}$-cube where the Hamiltonian cycle $h$ has been removed. We define the Markov matrix $P_h$ for each line $X$ and each column $Y$ as follows: -$$\left\{ +\begin{equation} +\left\{ \begin{array}{ll} -P_h(X,X)=\frac{1}{2}+\frac{1}{2n} & \\ +P_h(X,X)=\frac{1}{2}+\frac{1}{2{\mathsf{N}}} & \\ P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\ -P_h(X,Y)=\frac{1}{2n} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} +P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} \end{array} \right. -$$ +\label{eq:Markov:rairo} +\end{equation} -We denote by $\ov{h} : \Bool^n \rightarrow \Bool^n$ the function -such that for any $X \in \Bool^n $, -$(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1}$. -The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^n$, +We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function +such that for any $X \in \Bool^{\mathsf{N}} $, +$(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$. +The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$, $\ov{h}(\ov{h}(X))\neq X$. \begin{Lemma}\label{lm:h} @@ -101,24 +188,24 @@ If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$. \begin{proof} Let $\ov{h}$ be bijective. -Let $k\in \llbracket 1, n \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$. +Let $k\in \llbracket 1, {\mathsf{N}} \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$. Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and -$\ov{h}^{-1}(X)\oplus X = 0^{n-k}10^{k-1}$. +$\ov{h}^{-1}(X)\oplus X = 0^{{\mathsf{N}}-k}10^{k-1}$. Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$. By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and -$X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1} = 0^{n-k}10^{k-1}$. +$X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1} = 0^{{\mathsf{N}}-k}10^{k-1}$. Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$. This contradicts the square-freeness of $\ov{h}$. \end{proof} Let $Z$ be a random variable that is uniformly distributed over -$\llbracket 1, n \rrbracket \times \Bool$. -For $X\in \Bool^n$, we +$\llbracket 1, {\mathsf{N}} \rrbracket \times \Bool$. +For $X\in \Bool^{\mathsf{N}}$, we define, with $Z=(i,b)$, $$ \left\{ \begin{array}{ll} -f(X,Z)=X\oplus (0^{n-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\ +f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\ f(X,Z)=X& \text{otherwise.} \end{array}\right. $$ @@ -128,15 +215,12 @@ $$ X_t= f(X_{t-1},Z_t) $$ -The pair $(f,Z)$ is a random mapping representation of $P_h$. -\JFC{interet de la phrase precedente} - %%%%%%%%%%%%%%%%%%%%%%%%%%%ù %\section{Stopping time} -An integer $\ell\in \llbracket 1,n \rrbracket$ is said {\it fair} +An integer $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ is said {\it fair} at time $t$ if there exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$. In other words, there exist a date $j$ before $t$ where @@ -144,7 +228,7 @@ the first element of the random variable $Z$ is exactly $l$ (\textit{i.e.}, $l$ is the strategy at date $j$) and where the configuration $X_j$ allows to traverse the edge $l$. -Let $\ts$ be the first time all the elements of $\llbracket 1, n \rrbracket$ +Let $\ts$ be the first time all the elements of $\llbracket 1, {\mathsf{N}} \rrbracket$ are fair. The integer $\ts$ is a randomized stopping time for the Markov chain $(X_t)$. @@ -161,17 +245,19 @@ $b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability $\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th bit of $X_{\tau_\ell}$ is $0$ or $1$ with the same probability ($\frac{1}{2}$). -By symmetry, \JFC{Je ne comprends pas ce by symetry} for $t\geq \tau_\ell$, the + + Moving next in the chain, at each step, +the $l$-th bit is switched from $0$ to $1$ or from $1$ to $0$ each time with +the same probability. Therefore, for $t\geq \tau_\ell$, the $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the -lemma. -\end{proof} +lemma.\end{proof} \begin{Theo} \label{prop:stop} If $\ov{h}$ is bijective and square-free, then -$E[\ts]\leq 8n^2+ n\ln (n+1)$. +$E[\ts]\leq 8{\mathsf{N}}^2+ {\mathsf{N}}\ln ({\mathsf{N}}+1)$. \end{Theo} -For each $X\in \Bool^n$ and $\ell\in\llbracket 1,n\rrbracket$, +For each $X\in \Bool^{\mathsf{N}}$ and $\ell\in\llbracket 1,{\mathsf{N}}\rrbracket$, let $S_{X,\ell}$ be the random variable that counts the number of steps from $X$ until we reach a configuration where @@ -184,61 +270,76 @@ $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$ \begin{Lemma}\label{prop:lambda} If $\ov{h}$ is a square-free bijective function, then the inequality -$E[\lambda_h]\leq 8n^2$ is established. +$E[\lambda_h]\leq 8{\mathsf{N}}^2$ is established. \end{Lemma} \begin{proof} For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq -\frac{1}{4n^2}$. Indeed, if $h(X)\neq \ell$, then -$\P(S_{X,\ell}=1)=\frac{1}{2n}\geq \frac{1}{4n^2}$. If $h(X)=\ell$, then -$\P(S_{X,\ell}=1)=0$. Let $X_0=X$. Since $\ov{h}$ is square-free, -$\ov{h}(\ov{h}^{-1}(X))\neq X$. It follows that $(X,\ov{h}^{-1}(X))\in E_h$. -Therefore $P(X_1=\ov{h}^{-1}(X))=\frac{1}{2n}$. now, -by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore -$\P(S_{X,\ell}=2\mid X_1=\ov{h}^{-1}(X))=\frac{1}{2n}$, proving that -$\P(S_{X,\ell}\leq 2)\geq \frac{1}{4n^2}$. - -Therefore, $\P(S_{X,\ell}\geq 2)\leq 1-\frac{1}{4n^2}$. By induction, one +\frac{1}{4{\mathsf{N}}^2}$. +Let $X_0= X$. +Indeed, +\begin{itemize} +\item if $h(X)\neq \ell$, then +$\P(S_{X,\ell}=1)=\frac{1}{2{\mathsf{N}}}\geq \frac{1}{4{\mathsf{N}}^2}$. +\item otherwise, $h(X)=\ell$, then +$\P(S_{X,\ell}=1)=0$. +But in this case, intutively, it is possible to move +from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in +$\ov{h}^{-1}(X)$ the $l$-th bit can be switched. +More formally, +since $\ov{h}$ is square-free, +$\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows +that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have +$P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h}, +$h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid +X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq +\frac{1}{4{\mathsf{N}}^2}$. +\end{itemize} + + + + +Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{4{\mathsf{N}}^2}$. By induction, one has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq -\left(1-\frac{1}{4n^2}\right)^i$. +\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i$. Moreover, -since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{}, that +since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$ Since $\P(S_{X,\ell}\geq i)\geq \P(S_{X,\ell}\geq i+1)$, one has $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq -\P(S_{X,\ell}\geq 1)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$ +\P(S_{X,\ell}\geq 1)+\P(S_{X,\ell}\geq 2)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$ Consequently, -$$E[S_{X,\ell}]\leq 1+2 -\sum_{i=1}^{+\infty}\left(1-\frac{1}{4n^2}\right)^i=1+2(4n^2-1)=8n^2-2,$$ +$$E[S_{X,\ell}]\leq 1+1+2 +\sum_{i=1}^{+\infty}\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i=2+2(4{\mathsf{N}}^2-1)=8{\mathsf{N}}^2,$$ which concludes the proof. \end{proof} -Let $\ts^\prime$ be the first time that there are exactly $n-1$ fair +Let $\ts^\prime$ be the first time that there are exactly ${\mathsf{N}}-1$ fair elements. \begin{Lemma}\label{lm:stopprime} -One has $E[\ts^\prime]\leq n \ln (n+1).$ +One has $E[\ts^\prime]\leq {\mathsf{N}} \ln ({\mathsf{N}}+1).$ \end{Lemma} \begin{proof} This is a classical Coupon Collector's like problem. Let $W_i$ be the random variable counting the number of moves done in the Markov chain while -we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{n-1}W_i$. +we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}-1}W_i$. But when we are at position $X$ with $i-1$ fair bits, the probability of - obtaining a new fair bit is either $1-\frac{i-1}{n}$ if $h(X)$ is fair, - or $1-\frac{i-2}{n}$ if $h(X)$ is not fair. It follows that -$E[W_i]\leq \frac{n}{n-i+2}$. Therefore -$$E[\ts^\prime]=\sum_{i=1}^{n-1}E[W_i]\leq n\sum_{i=1}^{n-1} - \frac{1}{n-i+2}=n\sum_{i=3}^{n+1}\frac{1}{i}.$$ - -But $\sum_{i=1}^{n+1}\frac{1}{i}\leq 1+\ln(n+1)$. It follows that -$1+\frac{1}{2}+\sum_{i=3}^{n+1}\frac{1}{i}\leq 1+\ln(n+1).$ + obtaining a new fair bit is either $1-\frac{i-1}{{\mathsf{N}}}$ if $h(X)$ is fair, + or $1-\frac{i-2}{{\mathsf{N}}}$ if $h(X)$ is not fair. It follows that +$E[W_i]\leq \frac{{\mathsf{N}}}{{\mathsf{N}}-i+2}$. Therefore +$$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}-1}E[W_i]\leq {\mathsf{N}}\sum_{i=1}^{{\mathsf{N}}-1} + \frac{1}{{\mathsf{N}}-i+2}={\mathsf{N}}\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}.$$ + +But $\sum_{i=1}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1)$. It follows that +$1+\frac{1}{2}+\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1).$ Consequently, -$E[\ts^\prime]\leq n (-\frac{1}{2}+\ln(n+1))\leq n\ln(n+1)$. +$E[\ts^\prime]\leq {\mathsf{N}} (-\frac{1}{2}+\ln({\mathsf{N}}+1))\leq {\mathsf{N}}\ln({\mathsf{N}}+1)$. \end{proof} -One can now prove Theo~\ref{prop:stop}. +One can now prove Theorem~\ref{prop:stop}. \begin{proof} One has $\ts\leq \ts^\prime+\lambda_h$. Therefore, @@ -246,4 +347,10 @@ Theorem~\ref{prop:stop} is a direct application of lemma~\ref{prop:lambda} and~\ref{lm:stopprime}. \end{proof} -\end{document} +Notice that the calculus of the stationary time upper bound is obtained +under the following constraint: for each vertex in the $\mathsf{N}$-cube +there are one ongoing arc and one outgoing arc that are removed. +The calculus does not consider (balanced) hamiltonian cycles, which +are more regular and more binding than this constraint. +In this later context, we claim that the upper bound for the stopping time +should be reduced.