X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/935ffe48008761ee21d78930849f51e32c62fcec..7dd748e9a068c99c61fefdcbde3c24e4c9b74bf9:/stopping.tex diff --git a/stopping.tex b/stopping.tex index faab606..d3b4f4d 100644 --- a/stopping.tex +++ b/stopping.tex @@ -20,23 +20,23 @@ the probability function $p$ defined on the set of edges as follows: $$ p(e) \left\{ \begin{array}{ll} -= \frac{1}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\ -= \frac{1}{3} \textrm{ otherwise.} += \frac{2}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\ += \frac{1}{6} \textrm{ otherwise.} \end{array} \right. $$ The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is \[ -P=\dfrac{1}{3} \left( +P=\dfrac{1}{6} \left( \begin{array}{llllllll} -1&1&1&0&0&0&0&0 \\ -1&1&0&0&0&1&0&0 \\ -0&0&1&1&0&0&1&0 \\ -0&1&1&1&0&0&0&0 \\ -1&0&0&0&1&0&1&0 \\ -0&0&0&0&1&1&0&1 \\ -0&0&0&0&1&0&1&1 \\ -0&0&0&1&0&1&0&1 +4&1&1&0&0&0&0&0 \\ +1&4&0&0&0&1&0&0 \\ +0&0&4&1&0&0&1&0 \\ +0&1&1&4&0&0&0&0 \\ +1&0&0&0&4&0&1&0 \\ +0&0&0&0&1&4&0&1 \\ +0&0&0&0&1&0&4&1 \\ +0&0&0&1&0&1&0&4 \end{array} \right) \] @@ -102,21 +102,21 @@ $$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$ and $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ -% One can prove that +One can prove that -% $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ +$$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ % It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il -% un intérêt dans la preuve ensuite.} +% un intérêt dans la preuve ensuite.} %and % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ -% One can prove that \JFc{Ou cela a-t-il été fait?} +% One can prove that \JFc{Ou cela a-t-il été fait?} % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ @@ -165,14 +165,16 @@ has been removed. We define the Markov matrix $P_h$ for each line $X$ and each column $Y$ as follows: -$$\left\{ +\begin{equation} +\left\{ \begin{array}{ll} -P_h(X,X)=\frac{1}{{\mathsf{N}}} & \\ +P_h(X,X)=\frac{1}{2}+\frac{1}{2{\mathsf{N}}} & \\ P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\ -P_h(X,Y)=\frac{1}{{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} +P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} \end{array} \right. -$$ +\label{eq:Markov:rairo} +\end{equation} We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function such that for any $X \in \Bool^{\mathsf{N}} $, @@ -197,14 +199,13 @@ This contradicts the square-freeness of $\ov{h}$. \end{proof} Let $Z$ be a random variable that is uniformly distributed over -$\llbracket 1, {\mathsf{N}}$. +$\llbracket 1, {\mathsf{N}} \rrbracket \times \Bool$. For $X\in \Bool^{\mathsf{N}}$, we -define, with $Z=i$, +define, with $Z=(i,b)$, $$ \left\{ \begin{array}{ll} -%f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\ -f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if $i\neq h(X)$},\\ +f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\ f(X,Z)=X& \text{otherwise.} \end{array}\right. $$ @@ -216,14 +217,14 @@ $$ -%%%%%%%%%%%%%%%%%%%%%%%%%%%ù +%%%%%%%%%%%%%%%%%%%%%%%%%%%ù %\section{Stopping time} An integer $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ is said {\it fair} at time $t$ if there -exists $0\leq j <t$ such that $Z_{j+1}=\ell$ and $h(X_j)\neq \ell$. -In other words, there exist a date $j$ before $t$ where -the random variable $Z$ is $l$ +exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$. +In other words, there exist a date $j$ before $t$ where +the first element of the random variable $Z$ is exactly $l$ (\textit{i.e.}, $l$ is the strategy at date $j$) and where the configuration $X_j$ allows to traverse the edge $l$. @@ -238,11 +239,10 @@ The integer $\ts$ is a strong stationary time. \begin{proof} Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable -$Z_{\tau_\ell}$ is of the form $\ell$ %with $\delta\in\{0,1\}$ and -% such that -% $b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability -% $\frac{1}{2}$. -Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th +$Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and +such that +$b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability +$\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th bit of $X_{\tau_\ell}$ is $0$ or $1$ with the same probability ($\frac{1}{2}$). @@ -254,7 +254,7 @@ lemma.\end{proof} \begin{Theo} \label{prop:stop} If $\ov{h}$ is bijective and square-free, then -$E[\ts]\leq {\mathsf{N}}^2+ (\mathsf{N}+2)(\ln(\mathsf{N})+2)$. +$E[\ts]\leq 8{\mathsf{N}}^2+ {\mathsf{N}}\ln ({\mathsf{N}}+1)$. \end{Theo} For each $X\in \Bool^{\mathsf{N}}$ and $\ell\in\llbracket 1,{\mathsf{N}}\rrbracket$, @@ -262,7 +262,7 @@ let $S_{X,\ell}$ be the random variable that counts the number of steps from $X$ until we reach a configuration where $\ell$ is fair. More formally -$$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=\ell \text{ and } X_0=X\}.$$ +$$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$ We denote by $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$ @@ -270,39 +270,39 @@ $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$ \begin{Lemma}\label{prop:lambda} If $\ov{h}$ is a square-free bijective function, then the inequality -$E[\lambda_h]\leq 2{\mathsf{N}}^2$ is established. +$E[\lambda_h]\leq 8{\mathsf{N}}^2$ is established. \end{Lemma} \begin{proof} -For every $X$, every $\ell$, one has $\P(S_{X,\ell}\leq 2)\geq -\frac{1}{{\mathsf{N}}^2}$. +For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq +\frac{1}{4{\mathsf{N}}^2}$. Let $X_0= X$. Indeed, \begin{itemize} \item if $h(X)\neq \ell$, then -$\P(S_{X,\ell}=1)=\frac{1}{{\mathsf{N}}}\geq \frac{1}{{\mathsf{N}}^2}$. +$\P(S_{X,\ell}=1)=\frac{1}{2{\mathsf{N}}}\geq \frac{1}{4{\mathsf{N}}^2}$. \item otherwise, $h(X)=\ell$, then $\P(S_{X,\ell}=1)=0$. But in this case, intutively, it is possible to move -from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{N}$). And in +from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in $\ov{h}^{-1}(X)$ the $l$-th bit can be switched. More formally, since $\ov{h}$ is square-free, $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have -$P(X_1=\ov{h}^{-1}(X))=\frac{1}{{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h}, +$P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid -X_1=\ov{h}^{-1}(X))=\frac{1}{{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq -\frac{1}{{\mathsf{N}}^2}$. +X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq +\frac{1}{4{\mathsf{N}}^2}$. \end{itemize} -Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{{\mathsf{N}}^2}$. By induction, one +Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{4{\mathsf{N}}^2}$. By induction, one has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq -\left(1-\frac{1}{{\mathsf{N}}^2}\right)^i$. +\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i$. Moreover, since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$ @@ -311,7 +311,7 @@ $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq \P(S_{X,\ell}\geq 1)+\P(S_{X,\ell}\geq 2)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$ Consequently, $$E[S_{X,\ell}]\leq 1+1+2 -\sum_{i=1}^{+\infty}\left(1-\frac{1}{{\mathsf{N}}^2}\right)^i=2+2({\mathsf{N}}^2-1)=2{\mathsf{N}}^2,$$ +\sum_{i=1}^{+\infty}\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i=2+2(4{\mathsf{N}}^2-1)=8{\mathsf{N}}^2,$$ which concludes the proof. \end{proof} @@ -319,49 +319,24 @@ Let $\ts^\prime$ be the first time that there are exactly ${\mathsf{N}}-1$ fair elements. \begin{Lemma}\label{lm:stopprime} -One has $E[\ts^\prime]\leq (\mathsf{N}+2)(\ln(\mathsf{N})+2)$. +One has $E[\ts^\prime]\leq {\mathsf{N}} \ln ({\mathsf{N}}+1).$ \end{Lemma} \begin{proof} -This is a classical Coupon Collector's like problem. Let $W_i$ -be the time to obtain the $i$-th fair bit -after $i-1$ fair bits have been obtained. -One has $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}}W_i$. - -At position $X$ with $i-1$ fair bits, -we do not obtain a new fair if $Z$ is one of the $i-1$ already fair bits -or if $Z$ is a new fair bit but $h(X)$ is $Z$. -This occures with probability -$p -= \frac{i-1}{{\mathsf{N}}} + \frac{n-i+1}{\mathsf{N}}.\frac{1}{\mathsf{N}} -=\frac{i(\mathsf{N}-1) +1}{\mathsf{N^2}} -$. -The random variable $W_i$ has a geometric distribution -\textit{i.e.}, $P(W_i = k) = p^{k-1}.(1-p)$ and -$E(W_i) = \frac{\mathsf{N^2}}{i(\mathsf{N}-1) +1}$. -Therefore -$$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}}E[W_i] -=\frac{\mathsf{N^2}}{\mathsf{N}(\mathsf{N}-1) +1} + \sum_{i=1}^{{\mathsf{N}}-1}E[W_i].$$ - -A simple study of the function $\mathsf{N} \mapsto \frac{\mathsf{N^2}}{\mathsf{N}(\mathsf{N}-1) +1}$ shows that it is bounded by $\frac{4}{3} \leq 2$. -For the second term, we successively have -$$ -\sum_{i=1}^{{\mathsf{N}}-1}E[W_i] -= \mathsf{N}^2\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{i(\mathsf{N}-1) +1} -\leq \mathsf{N}^2\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{i(\mathsf{N}-1)} -\leq \frac{\mathsf{N}^2}{\mathsf{N}-1}\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{i} -\leq (\mathsf{N}+2)\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{i} -$$ - - -It is well known that -$\sum_{i=1}^{{\mathsf{N}}-1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}-1)$. -It follows that -$2+(\mathsf{N}+2)\sum_{i=1}^{{\mathsf{N}}-1}\frac{1}{i} -\leq -2+(\mathsf{N}+2)(\ln(\mathsf{N}-1)+1) -\leq -(\mathsf{N}+2)(\ln(\mathsf{N})+2)$. +This is a classical Coupon Collector's like problem. Let $W_i$ be the +random variable counting the number of moves done in the Markov chain while +we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}-1}W_i$. + But when we are at position $X$ with $i-1$ fair bits, the probability of + obtaining a new fair bit is either $1-\frac{i-1}{{\mathsf{N}}}$ if $h(X)$ is fair, + or $1-\frac{i-2}{{\mathsf{N}}}$ if $h(X)$ is not fair. It follows that +$E[W_i]\leq \frac{{\mathsf{N}}}{{\mathsf{N}}-i+2}$. Therefore +$$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}-1}E[W_i]\leq {\mathsf{N}}\sum_{i=1}^{{\mathsf{N}}-1} + \frac{1}{{\mathsf{N}}-i+2}={\mathsf{N}}\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}.$$ + +But $\sum_{i=1}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1)$. It follows that +$1+\frac{1}{2}+\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1).$ +Consequently, +$E[\ts^\prime]\leq {\mathsf{N}} (-\frac{1}{2}+\ln({\mathsf{N}}+1))\leq {\mathsf{N}}\ln({\mathsf{N}}+1)$. \end{proof} One can now prove Theorem~\ref{prop:stop}.