X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/935ffe48008761ee21d78930849f51e32c62fcec..f7f2b1f98aa13a31b26d9cdccd417f4f1c44bc8b:/stopping.tex?ds=inline diff --git a/stopping.tex b/stopping.tex index faab606..3a07e06 100644 --- a/stopping.tex +++ b/stopping.tex @@ -20,23 +20,23 @@ the probability function $p$ defined on the set of edges as follows: $$ p(e) \left\{ \begin{array}{ll} -= \frac{1}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\ -= \frac{1}{3} \textrm{ otherwise.} += \frac{2}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\ += \frac{1}{6} \textrm{ otherwise.} \end{array} \right. $$ The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is \[ -P=\dfrac{1}{3} \left( +P=\dfrac{1}{6} \left( \begin{array}{llllllll} -1&1&1&0&0&0&0&0 \\ -1&1&0&0&0&1&0&0 \\ -0&0&1&1&0&0&1&0 \\ -0&1&1&1&0&0&0&0 \\ -1&0&0&0&1&0&1&0 \\ -0&0&0&0&1&1&0&1 \\ -0&0&0&0&1&0&1&1 \\ -0&0&0&1&0&1&0&1 +4&1&1&0&0&0&0&0 \\ +1&4&0&0&0&1&0&0 \\ +0&0&4&1&0&0&1&0 \\ +0&1&1&4&0&0&0&0 \\ +1&0&0&0&4&0&1&0 \\ +0&0&0&0&1&4&0&1 \\ +0&0&0&0&1&0&4&1 \\ +0&0&0&1&0&1&0&4 \end{array} \right) \] @@ -81,7 +81,9 @@ A specific random walk in this modified hypercube is first introduced. We further detail a theoretical study on the length of the path which is sufficient to follow to get a uniform distribution. - +Notice that for a general references on Markov chains +see~\cite{LevinPeresWilmer2006} +, and particularly Chapter~5 on stopping times. @@ -102,21 +104,21 @@ $$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$ and $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ -% One can prove that +One can prove that -% $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ +$$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ % It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il -% un intérêt dans la preuve ensuite.} +% un intérêt dans la preuve ensuite.} %and % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ -% One can prove that \JFc{Ou cela a-t-il été fait?} +% One can prove that \JFc{Ou cela a-t-il été fait?} % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ @@ -138,11 +140,14 @@ randomized stopping time (possibly depending on the starting position $X$), such that the distribution of $X_\tau$ is $\pi$: $$\P_X(X_\tau=Y)=\pi(Y).$$ +A stopping time $\tau$ is a {\emph strong stationary time} if $X_{\tau}$ is +independent of $\tau$. + -\begin{Theo} +\begin{thrm} If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}} \P_X(\tau > t)$. -\end{Theo} +\end{thrm} %Let $\Bool^n$ be the set of words of length $n$. @@ -165,14 +170,16 @@ has been removed. We define the Markov matrix $P_h$ for each line $X$ and each column $Y$ as follows: -$$\left\{ +\begin{equation} +\left\{ \begin{array}{ll} -P_h(X,X)=\frac{1}{{\mathsf{N}}} & \\ +P_h(X,X)=\frac{1}{2}+\frac{1}{2{\mathsf{N}}} & \\ P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\ -P_h(X,Y)=\frac{1}{{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} +P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} \end{array} \right. -$$ +\label{eq:Markov:rairo} +\end{equation} We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function such that for any $X \in \Bool^{\mathsf{N}} $, @@ -180,9 +187,9 @@ $(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$. The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$, $\ov{h}(\ov{h}(X))\neq X$. -\begin{Lemma}\label{lm:h} +\begin{lmm}\label{lm:h} If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$. -\end{Lemma} +\end{lmm} \begin{proof} Let $\ov{h}$ be bijective. @@ -197,14 +204,13 @@ This contradicts the square-freeness of $\ov{h}$. \end{proof} Let $Z$ be a random variable that is uniformly distributed over -$\llbracket 1, {\mathsf{N}}$. +$\llbracket 1, {\mathsf{N}} \rrbracket \times \Bool$. For $X\in \Bool^{\mathsf{N}}$, we -define, with $Z=i$, +define, with $Z=(i,b)$, $$ \left\{ \begin{array}{ll} -%f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\ -f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if $i\neq h(X)$},\\ +f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\ f(X,Z)=X& \text{otherwise.} \end{array}\right. $$ @@ -216,14 +222,14 @@ $$ -%%%%%%%%%%%%%%%%%%%%%%%%%%%ù +%%%%%%%%%%%%%%%%%%%%%%%%%%%ù %\section{Stopping time} An integer $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ is said {\it fair} at time $t$ if there -exists $0\leq j