X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/ac6bb3190276a11caaed94b7443f95f697328bcd..ce7a3e374f8ea8cd61b0cfebb7a7eae7852f75e1:/chaos.tex?ds=sidebyside diff --git a/chaos.tex b/chaos.tex index 569d44a..d5ab5f9 100644 --- a/chaos.tex +++ b/chaos.tex @@ -40,41 +40,41 @@ This necessitates a rigorous proof, which is the aim of this section. Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f : \mathcal{X} \rightarrow \mathcal{X}$. -\begin{Def} +\begin{dfntn} The function $f$ is said to be \emph{topologically transitive} if, for any pair of open sets $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq \varnothing$. -\end{Def} +\end{dfntn} -\begin{Def} +\begin{dfntn} An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$ if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$ -\end{Def} +\end{dfntn} -\begin{Def} +\begin{dfntn} $f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$, any neighborhood of $x$ contains at least one periodic point (without necessarily the same period). -\end{Def} +\end{dfntn} -\begin{Def}[Devaney's formulation of chaos~\cite{Devaney}] +\begin{dfntn}[Devaney's formulation of chaos~\cite{Devaney}] The function $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and topologically transitive. -\end{Def} +\end{dfntn} The chaos property is strongly linked to the notion of ``sensitivity'', defined on a metric space $(\mathcal{X},d)$ by: -\begin{Def} +\begin{dfntn} \label{sensitivity} The function $f$ has \emph{sensitive dependence on initial conditions} if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that $d\left(f^{n}(x), f^{n}(y)\right) >\delta $. The constant $\delta$ is called the \emph{constant of sensitivity} of $f$. -\end{Def} +\end{dfntn} Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of @@ -318,9 +318,9 @@ $$ %\left| \sum_{l=0}^{v^k-1} \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{l}} - \su Let us show that, -\begin{proposition} +\begin{prpstn} $d$ is a distance on $\mathcal{X}_{\mathsf{N},\mathcal{P}}$. -\end{proposition} +\end{prpstn} \begin{proof} @@ -342,10 +342,10 @@ definition of $d$. Then, as digits between positions $p+1$ and $p+n$ are null an Before being able to study the topological behavior of the general chaotic iterations, we must first establish that: -\begin{proposition} +\begin{prpstn} For all $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, the function $G_f$ is continuous on $\left( \mathcal{X},d\right)$. -\end{proposition} +\end{prpstn} \begin{proof} @@ -433,11 +433,11 @@ since the function $f_0$ is equal to its inverse $f_0^{-1}$. \subsection{Proofs of chaos} We will show that, -\begin{proposition} +\begin{prpstn} \label{prop:trans} $\Gamma_{\mathcal{P}}(f)$ is strongly connected if and only if $G_f$ is topologically transitive on $(\mathcal{X}_{\mathsf{N},\mathcal{P}}, d)$. -\end{proposition} +\end{prpstn} \begin{proof} @@ -485,10 +485,10 @@ cannot be reached from any neighborhood of $e_1$, and thus $G_f$ is not transiti We show now that, -\begin{proposition} +\begin{prpstn} If $\Gamma_{\mathcal{P}}(f)$ is strongly connected, then $G_f$ is regular on $(\mathcal{X}_{\mathsf{N},\mathcal{P}}, d)$. -\end{proposition} +\end{prpstn} \begin{proof} Let $x=(e,(u,v)) \in \mathcal{X}_{\mathsf{N},\mathcal{P}}$ and $\varepsilon >0$. @@ -508,15 +508,15 @@ is a periodic point in the neighborhood $\mathcal{B}(x,\varepsilon)$ of $x$. \end{proof} $G_f$ being topologically transitive and regular, we can thus conclude that -\begin{Theo} +\begin{thrm} The function $G_f$ is chaotic on $(\mathcal{X}_{\mathsf{N},\mathcal{P}},d)$ if and only if its iteration graph $\Gamma_{\mathcal{P}}(f)$ is strongly connected. -\end{Theo} +\end{thrm} -\begin{Corollary} +\begin{crllr} The pseudorandom number generator $\chi_{\textit{14Secrypt}}$ is not chaotic on $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ for the negation function. -\end{Corollary} +\end{crllr} \begin{proof} In this context, $\mathcal{P}$ is the singleton $\{b\}$. If $b$ is even, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach