X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/b14071948f5418eda195be08e12edc746770f7de..refs/heads/master:/main.tex?ds=inline diff --git a/main.tex b/main.tex index b199995..465fbf5 100644 --- a/main.tex +++ b/main.tex @@ -58,12 +58,6 @@ \def \ts {\tau_{\rm stop}} -\newtheorem{Def}{Definition} -%\newtheorem{Lemma}{\underline{Lemma}} -\newtheorem{Theo}{Theorem} -\newtheorem{Corollary}{Corollary} -\newtheorem{Lemma}{Lemma} -\newtheorem{proposition}{Proposition} \newtheorem*{xpl}{Running Example} \newcommand{\vectornorm}[1]{\ensuremath{\left|\left|#1\right|\right|_2}} @@ -92,10 +86,12 @@ \begin{document} -\author{Jean-François Couchot, Christophe Guyeux, Pierre-Cyrile Heam} -\address{Institut FEMTO-ST, Université de Franche-Comté, Belfort, France} +\author{Jean-François Couchot, Christophe Guyeux, Pierre-Cyrille Heam} +\address{FEMTO-ST Institute, University of Franche-Comté, Belfort, France} +\keywords{Pseudorandom Number Generator, Theory of Chaos, Markov Matrice, Hamiltonian Path, Mixing Time, Stopping Time, Statistical Test} +\subjclass{34C28, 37A25,11K45} \begin{abstract} This paper is dedicated to the design of chaotic random generators @@ -103,8 +99,8 @@ and extends previous works proposed by some of the authors. We propose a theoretical framework proving both the chaotic properties and that the limit distribution is uniform. A theoretical bound on the stationary time is given and -practical experiments show that the generators successfully passe -the classical statsitcal tests. +practical experiments show that the generators successfully pass +the classical statistical tests. \end{abstract} \maketitle