X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/bc87eea8f89e38db87cb1d4705c6cfbfa993e27c..fe2fb6840b6891f539276e8215b1b8d762a90fd0:/preliminaries.tex diff --git a/preliminaries.tex b/preliminaries.tex index de77e12..9441aab 100644 --- a/preliminaries.tex +++ b/preliminaries.tex @@ -94,57 +94,6 @@ P=\dfrac{1}{6} \left( \end{xpl} - -More generally, let $\pi$, $\mu$ be two distribution on $\Bool^n$. The total -variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is -defined by -$$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ It is known that -$$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Bool^n}|\pi(x)-\mu(x)|.$$ Moreover, if -$\nu$ is a distribution on $\Bool^n$, one has -$$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$ - -Let $P$ be the matrix of a Markov chain on $\Bool^n$. $P(x,\cdot)$ is the -distribution induced by the $x$-th row of $P$. If the Markov chain induced by -$P$ has a stationary distribution $\pi$, then we define -$$d(t)=\max_{x\in\Bool^n}\tv{P^t(x,\cdot)-\pi}.$$ -It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il -un intérêt dans la preuve ensuite.} - - - -%and -% $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ -% One can prove that \JFc{Ou cela a-t-il été fait?} -% $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ - - - -Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^n$ valued random -variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping - time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq -\Omega^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. -In other words, the event $\{\tau = t \}$ only depends on the values of -$(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$. - - -\JFC{Je ne comprends pas la definition de randomized stopping time, Peut-on enrichir ?} - -Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a -random mapping representation of the Markov chain. A {\it randomized - stopping time} for the Markov chain is a stopping time for -$(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$ -as stationary distribution, then a {\it stationary time} $\tau$ is a -randomized stopping time (possibly depending on the starting position $x$), -such that the distribution of $X_\tau$ is $\pi$: -$$\P_x(X_\tau=y)=\pi(y).$$ - - -\JFC{Ou ceci a-t-il ete prouvé} -\begin{Theo} -If $\tau$ is a strong stationary time, then $d(t)\leq \max_{x\in\Bool^n} -\P_x(\tau > t)$. -\end{Theo} - % % Let us first recall the \emph{Total Variation} distance $\tv{\pi-\mu}$, % % which is defined for two distributions $\pi$ and $\mu$ on the same set % % $\Bool^n$ by: