X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rairo15.git/blobdiff_plain/c8b7da5a49ee32f19091be950c39633b20b344e3..9fc003099dc86caaa2ccf0645be2764c81418534:/conclusion.tex?ds=inline diff --git a/conclusion.tex b/conclusion.tex index af0400f..fcf2bad 100644 --- a/conclusion.tex +++ b/conclusion.tex @@ -1,18 +1,35 @@ -Dans cet article, nous avons montré qu'une fonction $G_f$ est chaotique si et -seulement la fonction booléenne $f$ a un graphe d'itérations chaotiques -fortement connexe. L'originalité majeure repose sur le type d'itérations -considéré, qui n'est pas limité à la mise à jour d'un seul élément par -itération, mais qui est étendu à la mise à jour simultanée de plusieurs éléments -du système à chaque itération. De plus, il a été prouvé que la sortie d'une -telle fonction suit une loi de distribution uniforme si et seulement si la -chaîne de Markov induite peut se représenter à l'aide d'une matrice doublement -stochastique. Enfin, un algorithme permettant d'engendrer des fonctions qui -vérifient ces deux contraintes a été présenté et évalué. Ces fonctions ont été -ensuite appliquées avec succès à la génération de nombres pseudo-aléatoires. -Les expériences sur une batterie de tests éprouvée ont pu confirmer la -pertinence de l'approche théorique. +This work has assumed a Boolean map $f$ which is embedded into +a discrete-time dynamical system $G_f$. +This one is supposed to be iterated a fixed number +$p_1$ or $p_2$,\ldots, or $p_{\mathds{p}}$ of +times before its output is considered. +This work has first shown that iterations of +$G_f$ are chaotic if and only if its iteration graph $\Gamma_{\mathcal{P}}(f)$ +is strongly connected where $\mathcal{P}$ is $\{p_1, \ldots, p_{\mathds{p}}\}$. +Any PRNG, which iterates $G_f$ as above +satisfies in some cases the property of chaos. -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "main" -%%% End: +We then have shown that a previously presented approach can be directly +applied here to generate function $f$ with strongly connected +$\Gamma_{\mathcal{P}}(f)$. +The iterated map inside the generator is built by first removing from a +$\mathsf{N}$-cube an Hamiltonian path and next +adding a self loop to each vertex. +The PRNG can thus be seen as a random walks of length in $\mathsf{P}$ +into $\mathsf{N}$ this new cube. +We furthermore have exhibit a bound on the number of iterations +that are sufficient to obtain a uniform distribution of the output. +Finally, experiments through the NIST battery have shown that +the statistical properties are almost established for +$\mathsf{N} = 4, 5, 6, 7, 8$. + +In future work, we intend to understand the link between +statistical tests and the properties of chaos for +the associated iterations. +By doing so, relations between desired statistically unbiased behaviors and +topological properties will be understood, leading to better choices +in iteration functions. +Conditions allowing the reduction of the stopping-time will be +investigated too, while other modifications of the hypercube will +be regarded in order to enlarge the set of known chaotic +and random iterations.