From 2644c7bc8564e7829d6f0d9b2e2a66e6460aec67 Mon Sep 17 00:00:00 2001 From: couchot Date: Sat, 14 Mar 2015 15:16:01 +0100 Subject: [PATCH] debut d'experimentations --- main.tex | 2 +- prng.tex | 30 ++++++++++++++++-------------- stopping.tex | 6 +++--- 3 files changed, 20 insertions(+), 18 deletions(-) diff --git a/main.tex b/main.tex index 9e544ca..92832e5 100644 --- a/main.tex +++ b/main.tex @@ -135,7 +135,7 @@ the classical statsitcal tests. %6) Se pose alors la question de comment générer une stratégie de "bonne qualité". Par exemple, combien de générateurs aléatoires embarquer ? (nouveau) -\section{Application to Pseudorandom Number Generation}\label{sec:prng} +\section{Experiments}\label{sec:prng} \input{prng} \JFC{ajouter ici les expérimentations} diff --git a/prng.tex b/prng.tex index 88253cf..45fcfcd 100644 --- a/prng.tex +++ b/prng.tex @@ -1,6 +1,7 @@ Let us finally present the pseudorandom number generator $\chi_{\textit{15Rairo}}$ -which is based on random walks in $\Gamma(f)$. -More precisely, let be given a Boolean map $f:\Bool^n \rightarrow \Bool^n$, +which is based on random walks in $\Gamma_{\{b\}}(f)$. +More precisely, let be given a Boolean map $f:\Bool^{\mathsf{N}} \rightarrow +\Bool^\mathsf{N}$, a PRNG \textit{Random}, an integer $b$ that corresponds an iteration number (\textit{i.e.}, the length of the walk), and an initial configuration $x^0$. @@ -32,21 +33,22 @@ return $x$\; \end{algorithm} -This PRNG is a particularized version of Algorithm given in~\cite{DBLP:conf/secrypt/CouchotHGWB14}. +This PRNG is slightly different from $\chi_{\textit{14Secrypt}}$ +recalled in Algorithm~\ref{CI Algorithm}. As this latter, the length of the random walk of our algorithm is always constant (and is equal to $b$). However, in the current version, we add the constraint that the probability to execute the function $F_f$ is equal to 0.5 since the output of $\textit{Random(1)}$ is uniform in $\{0,1\}$. +This constraint is added to match the theoretical framework of +Sect.~\ref{sec:hypercube}. + + + +Notice that the chaos property of $G_f$ given in Sect.\ref{sec:proofOfChaos} +only requires that the graph $\Gamma_{\{b\}}(f)$ is strongly connected. +Since the $\chi_{\textit{15Rairo}}$ algorithme +only adds propbability constraints on existing edges, +it preserves this property. + -Let $f: \Bool^{n} \rightarrow \Bool^{n}$. -It has been shown~\cite[Th. 4, p. 135]{bcgr11:ip} that -if its iteration graph is strongly connected, then -the output of $\chi_{\textit{14Secrypt}}$ follows -a law that tends to the uniform distribution -if and only if its Markov matrix is a doubly stochastic matrix. - -Let us now present a method to -generate functions -with Doubly Stochastic matrix and Strongly Connected iteration graph, -denoted as DSSC matrix. diff --git a/stopping.tex b/stopping.tex index e413688..eec08aa 100644 --- a/stopping.tex +++ b/stopping.tex @@ -289,10 +289,10 @@ More formally, since $\ov{h}$ is square-free, $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have -$P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\MATHSF{N}}}$. Now, by Lemma~\ref{lm:h}, +$P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid -X_1=\ov{h}^{-1}(X))=\frac{1}{2{\MATHSF{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq -\frac{1}{4{\MATHSF{N}}^2}$. +X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq +\frac{1}{4{\mathsf{N}}^2}$. \end{itemize} -- 2.39.5