From 3820ec6286eab552baad3b3d7c0451e1bbc42482 Mon Sep 17 00:00:00 2001 From: couchot <jf.couchot@gmail.com> Date: Fri, 20 Feb 2015 10:11:30 +0100 Subject: [PATCH 1/1] modif Sxl --- stopping.tex | 152 +++++++++++++++++++++++++++++---------------------- 1 file changed, 87 insertions(+), 65 deletions(-) diff --git a/stopping.tex b/stopping.tex index 9309221..567ab01 100644 --- a/stopping.tex +++ b/stopping.tex @@ -13,14 +13,14 @@ First of all, let $\pi$, $\mu$ be two distributions on $\Bool^n$. The total variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is defined by $$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ It is known that -$$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Bool^n}|\pi(x)-\mu(x)|.$$ Moreover, if +$$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^n}|\pi(X)-\mu(X)|.$$ Moreover, if $\nu$ is a distribution on $\Bool^n$, one has $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$ Let $P$ be the matrix of a Markov chain on $\Bool^n$. $P(x,\cdot)$ is the distribution induced by the $x$-th row of $P$. If the Markov chain induced by $P$ has a stationary distribution $\pi$, then we define -$$d(t)=\max_{x\in\Bool^n}\tv{P^t(x,\cdot)-\pi}.$$ +$$d(t)=\max_{X\in\Bool^n}\tv{P^t(X,\cdot)-\pi}.$$ It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il un intérêt dans la preuve ensuite.} @@ -48,86 +48,103 @@ random mapping representation of the Markov chain. A {\it randomized stopping time} for the Markov chain is a stopping time for $(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$ as stationary distribution, then a {\it stationary time} $\tau$ is a -randomized stopping time (possibly depending on the starting position $x$), +randomized stopping time (possibly depending on the starting position $X$), such that the distribution of $X_\tau$ is $\pi$: -$$\P_x(X_\tau=y)=\pi(y).$$ +$$\P_X(X_\tau=Y)=\pi(Y).$$ -\JFC{Ou ceci a-t-il ete prouvé} +\JFC{Ou ceci a-t-il ete prouvé. On ne définit pas ce qu'est un strong stationary time.} \begin{Theo} -If $\tau$ is a strong stationary time, then $d(t)\leq \max_{x\in\Bool^n} -\P_x(\tau > t)$. +If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^n} +\P_X(\tau > t)$. \end{Theo} %Let $\Bool^n$ be the set of words of length $n$. -Let $E=\{(x,y)\mid -x\in \Bool^n, y\in \Bool^n,\ x=y \text{ or } x\oplus y \in 0^*10^*\}$. +Let $E=\{(X,Y)\mid +X\in \Bool^n, Y\in \Bool^n,\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$. In other words, $E$ is the set of all the edges in the classical $n$-cube. Let $h$ be a function from $\Bool^n$ into $\llbracket 1, n \rrbracket$. Intuitively speaking $h$ aims at memorizing for each node -$x \in \Bool^n$ which edge is removed in the Hamiltonian cycle, +$X \in \Bool^n$ which edge is removed in the Hamiltonian cycle, \textit{i.e.} which bit in $\llbracket 1, n \rrbracket$ cannot be switched. -We denote by $E_h$ the set $E\setminus\{(x,y)\mid x\oplus y = -0^{n-h(x)}10^{h(x)-1}\}$. This is the set of the modified hypercube, +We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y = +0^{n-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube, \textit{i.e.}, the $n$-cube where the Hamiltonian cycle $h$ has been removed. -We define the Markov matrix $P_h$ for each line $x$ and -each column $y$ as follows: +We define the Markov matrix $P_h$ for each line $X$ and +each column $Y$ as follows: $$\left\{ \begin{array}{ll} -P_h(x,x)=\frac{1}{2}+\frac{1}{2n} & \\ -P_h(x,y)=0 & \textrm{if $(x,y)\notin E_h$}\\ -P_h(x,y)=\frac{1}{2n} & \textrm{if $x\neq y$ and $(x,y) \in E_h$} +P_h(X,X)=\frac{1}{2}+\frac{1}{2n} & \\ +P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\ +P_h(X,Y)=\frac{1}{2n} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} \end{array} \right. $$ We denote by $\ov{h} : \Bool^n \rightarrow \Bool^n$ the function -such that for any $x \in \Bool^n $, -$(x,\ov{h}(x)) \in E$ and $x\oplus\ov{h}(x)=0^{n-h(x)}10^{h(x)-1}$. -The function $\ov{h}$ is said {\it square-free} if for every $x\in \Bool^n$, -$\ov{h}(\ov{h}(x))\neq x$. +such that for any $X \in \Bool^n $, +$(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1}$. +The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^n$, +$\ov{h}(\ov{h}(X))\neq X$. \begin{Lemma}\label{lm:h} -If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(x))\neq h(x)$. +If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$. \end{Lemma} -\begin{Proof} -\JFC{ecrire la preuve} -\end{Proof} +\begin{proof} +Let $\ov{h}$ be bijective. +Let $k\in \llbracket 1, n \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$. +Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and +$\ov{h}^{-1}(X)\oplus X = 0^{n-k}10^{k-1}$. +Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$. +By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and +$X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1} = 0^{n-k}10^{k-1}$. +Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$. +This contradicts the square-freeness of $\ov{h}$. +\end{proof} -Let $Z$ be a random variable over -$\llbracket 1, n \rrbracket \times\{0,1\}$ uniformly distributed. - For $X\in \Bool^n$, we -define, with $Z=(i,x)$, +Let $Z$ be a random variable that is uniformly distributed over +$\llbracket 1, n \rrbracket \times \Bool$. +For $X\in \Bool^n$, we +define, with $Z=(i,b)$, $$ \left\{ \begin{array}{ll} -f(X,Z)=X\oplus (0^{n-i}10^{i-1}) & \text{if } x=1 \text{ and } i\neq h(X),\\ +f(X,Z)=X\oplus (0^{n-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\ f(X,Z)=X& \text{otherwise.} \end{array}\right. $$ -The pair $f,Z$ is a random mapping representation of $P_h$. +The Markov chain is thus defined as +$$ +X_t= f(X_{t-1},Z_t) +$$ +The pair $(f,Z)$ is a random mapping representation of $P_h$. +\JFC{interet de la phrase precedente} %%%%%%%%%%%%%%%%%%%%%%%%%%%ù -\section{Stopping time} - -An integer $\ell\in\{1,\ldots,n\}$ is said {\it fair} at time $t$ if there -exists $0\leq j <t$ such that $Z_j=(\ell,\cdot)$ and $h(X_j)\neq \ell$. - +%\section{Stopping time} + +An integer $\ell\in \llbracket 1,n \rrbracket$ is said {\it fair} +at time $t$ if there +exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$. +In other words, there exist a date $j$ before $t$ where +the first element of the random variable $Z$ is exactly $l$ +(\textit{i.e.}, $l$ is the strategy at date $j$) +and where the configuration $X_j$ allows to traverse the edge $l$. -Let $\ts$ be the first time all the elements of $\{1,\ldots,n\}$ +Let $\ts$ be the first time all the elements of $\llbracket 1, n \rrbracket$ are fair. The integer $\ts$ is a randomized stopping time for the Markov chain $(X_t)$. @@ -138,10 +155,13 @@ The integer $\ts$ is a strong stationary time. \begin{proof} Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable -$Z_{\tau_\ell-1}$ is of the form $(\ell,\delta)$ with $\delta\in\{0,1\}$ and -$\delta=1$ with probability $\frac{1}{2}$ and $\delta=0$ with probability +$Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and +such that +$b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability $\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th -bit of $X_{\tau_\ell}$ is $\delta$. By symmetry, for $t\geq \tau_\ell$, the +bit of $X_{\tau_\ell}$ +is $0$ or $1$ with the same probability ($\frac{1}{2}$). +By symmetry, \JFC{Je ne comprends pas ce by symetry} for $t\geq \tau_\ell$, the $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the lemma. \end{proof} @@ -151,13 +171,15 @@ If $\ov{h}$ is bijective and square-free, then $E[\ts]\leq 8n^2+ n\ln (n+1)$. \end{Theo} -For each $x\in \Bool^n$ and $\ell\in\{1,\ldots,n\}$, let $S_{x,\ell}$ be the -random variable counting the number of steps done until reaching from $x$ a state where +For each $X\in \Bool^n$ and $\ell\in\llbracket 1,n\rrbracket$, +let $S_{X,\ell}$ be the +random variable that counts the number of steps +from $X$ until we reach a configuration where $\ell$ is fair. More formally -$$S_{x,\ell}=\min \{m \geq 1\mid h(X_m)\neq \ell\text{ and }Z_m=\ell\text{ and } X_0=x\}.$$ +$$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,\.)\text{ and } X_0=X\}.$$ We denote by -$$\lambda_h=\max_{x,\ell} S_{x,\ell}.$$ +$$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$ \begin{Lemma}\label{prop:lambda} @@ -165,27 +187,27 @@ If $\ov{h}$ is a square-free bijective function, then one has $E[\lambda_h]\leq \end{Lemma} \begin{proof} -For every $x$, every $\ell$, one has $\P(S_{x,\ell})\leq 2)\geq -\frac{1}{4n^2}$. Indeed, if $h(x)\neq \ell$, then -$\P(S_{x,\ell}=1)=\frac{1}{2n}\geq \frac{1}{4n^2}$. If $h(x)=\ell$, then -$\P(S_{x,\ell}=1)=0$. Let $X_0=x$. Since $\ov{h}$ is square-free, -$\ov{h}(\ov{h}^{-1}(x))\neq x$. It follows that $(x,\ov{h}^{-1}(x))\in E_h$. -Therefore $P(X_1=\ov{h}^{-1}(x))=\frac{1}{2n}$. now, -by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(x))\neq h(x)$. Therefore -$\P(S_{x,\ell}=2\mid X_1=\ov{h}^{-1}(x))=\frac{1}{2n}$, proving that -$\P(S_{x,\ell}\leq 2)\geq \frac{1}{4n^2}$. - -Therefore, $\P(S_{x,\ell}\geq 2)\leq 1-\frac{1}{4n^2}$. By induction, one -has, for every $i$, $\P(S_{x,\ell}\geq 2i)\leq +For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq +\frac{1}{4n^2}$. Indeed, if $h(X)\neq \ell$, then +$\P(S_{X,\ell}=1)=\frac{1}{2n}\geq \frac{1}{4n^2}$. If $h(X)=\ell$, then +$\P(S_{X,\ell}=1)=0$. Let $X_0=X$. Since $\ov{h}$ is square-free, +$\ov{h}(\ov{h}^{-1}(X))\neq X$. It follows that $(X,\ov{h}^{-1}(X))\in E_h$. +Therefore $P(X_1=\ov{h}^{-1}(X))=\frac{1}{2n}$. now, +by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore +$\P(S_{X,\ell}=2\mid X_1=\ov{h}^{-1}(X))=\frac{1}{2n}$, proving that +$\P(S_{X,\ell}\leq 2)\geq \frac{1}{4n^2}$. + +Therefore, $\P(S_{X,\ell}\geq 2)\leq 1-\frac{1}{4n^2}$. By induction, one +has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq \left(1-\frac{1}{4n^2}\right)^i$. Moreover, -since $S_{x,\ell}$ is positive, it is known~\cite[lemma 2.9]{}, that -$$E[S_{x,\ell}]=\sum_{i=1}^{+\infty}\P(S_{x,\ell}\geq i).$$ -Since $\P(S_{x,\ell}\geq i)\geq \P(S_{x,\ell}\geq i+1)$, one has -$$E[S_{x,\ell}]=\sum_{i=1}^{+\infty}\P(S_{x,\ell}\geq i)\leq -\P(S_{x,\ell}\geq 1)+2 \sum_{i=1}^{+\infty}\P(S_{x,\ell}\geq 2i).$$ +since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{}, that +$$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$ +Since $\P(S_{X,\ell}\geq i)\geq \P(S_{X,\ell}\geq i+1)$, one has +$$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq +\P(S_{X,\ell}\geq 1)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$ Consequently, -$$E[S_{x,\ell}]\leq 1+2 +$$E[S_{X,\ell}]\leq 1+2 \sum_{i=1}^{+\infty}\left(1-\frac{1}{4n^2}\right)^i=1+2(4n^2-1)=8n^2-2,$$ which concludes the proof. \end{proof} @@ -201,9 +223,9 @@ One has $E[\ts^\prime]\leq n \ln (n+1).$ This is a classical Coupon Collector's like problem. Let $W_i$ be the random variable counting the number of moves done in the Markov chain while we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{n-1}W_i$. - But when we are at position $x$ with $i-1$ fair bits, the probability of - obtaining a new fair bit is either $1-\frac{i-1}{n}$ if $h(x)$ is fair, - or $1-\frac{i-2}{n}$ if $h(x)$ is not fair. It follows that + But when we are at position $X$ with $i-1$ fair bits, the probability of + obtaining a new fair bit is either $1-\frac{i-1}{n}$ if $h(X)$ is fair, + or $1-\frac{i-2}{n}$ if $h(X)$ is not fair. It follows that $E[W_i]\leq \frac{n}{n-i+2}$. Therefore $$E[\ts^\prime]=\sum_{i=1}^{n-1}E[W_i]\leq n\sum_{i=1}^{n-1} \frac{1}{n-i+2}=n\sum_{i=3}^{n+1}\frac{1}{i}.$$ -- 2.39.5