From 935ffe48008761ee21d78930849f51e32c62fcec Mon Sep 17 00:00:00 2001 From: couchot <jf.couchot@gmail.com> Date: Sat, 14 Mar 2015 09:57:20 +0100 Subject: [PATCH] stoping --- stopping.tex | 197 +++++++++++++++++++++++++++++---------------------- 1 file changed, 112 insertions(+), 85 deletions(-) diff --git a/stopping.tex b/stopping.tex index 0ad3e8a..faab606 100644 --- a/stopping.tex +++ b/stopping.tex @@ -20,23 +20,23 @@ the probability function $p$ defined on the set of edges as follows: $$ p(e) \left\{ \begin{array}{ll} -= \frac{2}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\ -= \frac{1}{6} \textrm{ otherwise.} += \frac{1}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\ += \frac{1}{3} \textrm{ otherwise.} \end{array} \right. $$ The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is \[ -P=\dfrac{1}{6} \left( +P=\dfrac{1}{3} \left( \begin{array}{llllllll} -4&1&1&0&0&0&0&0 \\ -1&4&0&0&0&1&0&0 \\ -0&0&4&1&0&0&1&0 \\ -0&1&1&4&0&0&0&0 \\ -1&0&0&0&4&0&1&0 \\ -0&0&0&0&1&4&0&1 \\ -0&0&0&0&1&0&4&1 \\ -0&0&0&1&0&1&0&4 +1&1&1&0&0&0&0&0 \\ +1&1&0&0&0&1&0&0 \\ +0&0&1&1&0&0&1&0 \\ +0&1&1&1&0&0&0&0 \\ +1&0&0&0&1&0&1&0 \\ +0&0&0&0&1&1&0&1 \\ +0&0&0&0&1&0&1&1 \\ +0&0&0&1&0&1&0&1 \end{array} \right) \] @@ -75,7 +75,7 @@ P=\dfrac{1}{6} \left( -This section considers functions $f: \Bool^n \rightarrow \Bool^n $ +This section considers functions $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}} $ issued from an hypercube where an Hamiltonian path has been removed. A specific random walk in this modified hypercube is first introduced. We further detail @@ -86,45 +86,45 @@ which is sufficient to follow to get a uniform distribution. -First of all, let $\pi$, $\mu$ be two distributions on $\Bool^n$. The total +First of all, let $\pi$, $\mu$ be two distributions on $\Bool^{\mathsf{N}}$. The total variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is defined by -$$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ It is known that -$$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^n}|\pi(X)-\mu(X)|.$$ Moreover, if -$\nu$ is a distribution on $\Bool^n$, one has +$$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$ It is known that +$$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$ Moreover, if +$\nu$ is a distribution on $\Bool^{\mathsf{N}}$, one has $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$ -Let $P$ be the matrix of a Markov chain on $\Bool^n$. $P(X,\cdot)$ is the +Let $P$ be the matrix of a Markov chain on $\Bool^{\mathsf{N}}$. $P(X,\cdot)$ is the distribution induced by the $X$-th row of $P$. If the Markov chain induced by $P$ has a stationary distribution $\pi$, then we define -$$d(t)=\max_{X\in\Bool^n}\tv{P^t(X,\cdot)-\pi}.$$ +$$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$ and $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ -One can prove that +% One can prove that -$$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ +% $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ % It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il -% un intérêt dans la preuve ensuite.} +% un intérêt dans la preuve ensuite.} %and % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$ -% One can prove that \JFc{Ou cela a-t-il été fait?} +% One can prove that \JFc{Ou cela a-t-il été fait?} % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$ -Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^n$ valued random +Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^{\mathsf{N}}$ valued random variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq -(\Bool^n)^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. +(\Bool^{\mathsf{N}})^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. In other words, the event $\{\tau = t \}$ only depends on the values of $(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$. @@ -140,44 +140,44 @@ $$\P_X(X_\tau=Y)=\pi(Y).$$ \begin{Theo} -If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^n} +If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}} \P_X(\tau > t)$. \end{Theo} %Let $\Bool^n$ be the set of words of length $n$. Let $E=\{(X,Y)\mid -X\in \Bool^n, Y\in \Bool^n,\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$. +X\in \Bool^{\mathsf{N}}, Y\in \Bool^{\mathsf{N}},\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$. In other words, $E$ is the set of all the edges in the classical -$n$-cube. -Let $h$ be a function from $\Bool^n$ into $\llbracket 1, n \rrbracket$. +${\mathsf{N}}$-cube. +Let $h$ be a function from $\Bool^{\mathsf{N}}$ into $\llbracket 1, {\mathsf{N}} \rrbracket$. Intuitively speaking $h$ aims at memorizing for each node -$X \in \Bool^n$ which edge is removed in the Hamiltonian cycle, -\textit{i.e.} which bit in $\llbracket 1, n \rrbracket$ +$X \in \Bool^{\mathsf{N}}$ which edge is removed in the Hamiltonian cycle, +\textit{i.e.} which bit in $\llbracket 1, {\mathsf{N}} \rrbracket$ cannot be switched. We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y = -0^{n-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube, -\textit{i.e.}, the $n$-cube where the Hamiltonian cycle $h$ +0^{{\mathsf{N}}-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube, +\textit{i.e.}, the ${\mathsf{N}}$-cube where the Hamiltonian cycle $h$ has been removed. We define the Markov matrix $P_h$ for each line $X$ and each column $Y$ as follows: $$\left\{ \begin{array}{ll} -P_h(X,X)=\frac{1}{2}+\frac{1}{2n} & \\ +P_h(X,X)=\frac{1}{{\mathsf{N}}} & \\ P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\ -P_h(X,Y)=\frac{1}{2n} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} +P_h(X,Y)=\frac{1}{{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} \end{array} \right. $$ -We denote by $\ov{h} : \Bool^n \rightarrow \Bool^n$ the function -such that for any $X \in \Bool^n $, -$(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1}$. -The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^n$, +We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function +such that for any $X \in \Bool^{\mathsf{N}} $, +$(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$. +The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$, $\ov{h}(\ov{h}(X))\neq X$. \begin{Lemma}\label{lm:h} @@ -186,24 +186,25 @@ If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$. \begin{proof} Let $\ov{h}$ be bijective. -Let $k\in \llbracket 1, n \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$. +Let $k\in \llbracket 1, {\mathsf{N}} \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$. Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and -$\ov{h}^{-1}(X)\oplus X = 0^{n-k}10^{k-1}$. +$\ov{h}^{-1}(X)\oplus X = 0^{{\mathsf{N}}-k}10^{k-1}$. Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$. By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and -$X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1} = 0^{n-k}10^{k-1}$. +$X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1} = 0^{{\mathsf{N}}-k}10^{k-1}$. Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$. This contradicts the square-freeness of $\ov{h}$. \end{proof} Let $Z$ be a random variable that is uniformly distributed over -$\llbracket 1, n \rrbracket \times \Bool$. -For $X\in \Bool^n$, we -define, with $Z=(i,b)$, +$\llbracket 1, {\mathsf{N}}$. +For $X\in \Bool^{\mathsf{N}}$, we +define, with $Z=i$, $$ \left\{ \begin{array}{ll} -f(X,Z)=X\oplus (0^{n-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\ +%f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\ +f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if $i\neq h(X)$},\\ f(X,Z)=X& \text{otherwise.} \end{array}\right. $$ @@ -215,18 +216,18 @@ $$ -%%%%%%%%%%%%%%%%%%%%%%%%%%%ù +%%%%%%%%%%%%%%%%%%%%%%%%%%%ù %\section{Stopping time} -An integer $\ell\in \llbracket 1,n \rrbracket$ is said {\it fair} +An integer $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ is said {\it fair} at time $t$ if there -exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$. -In other words, there exist a date $j$ before $t$ where -the first element of the random variable $Z$ is exactly $l$ +exists $0\leq j <t$ such that $Z_{j+1}=\ell$ and $h(X_j)\neq \ell$. +In other words, there exist a date $j$ before $t$ where +the random variable $Z$ is $l$ (\textit{i.e.}, $l$ is the strategy at date $j$) and where the configuration $X_j$ allows to traverse the edge $l$. -Let $\ts$ be the first time all the elements of $\llbracket 1, n \rrbracket$ +Let $\ts$ be the first time all the elements of $\llbracket 1, {\mathsf{N}} \rrbracket$ are fair. The integer $\ts$ is a randomized stopping time for the Markov chain $(X_t)$. @@ -237,10 +238,11 @@ The integer $\ts$ is a strong stationary time. \begin{proof} Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable -$Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and -such that -$b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability -$\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th +$Z_{\tau_\ell}$ is of the form $\ell$ %with $\delta\in\{0,1\}$ and +% such that +% $b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability +% $\frac{1}{2}$. +Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th bit of $X_{\tau_\ell}$ is $0$ or $1$ with the same probability ($\frac{1}{2}$). @@ -252,15 +254,15 @@ lemma.\end{proof} \begin{Theo} \label{prop:stop} If $\ov{h}$ is bijective and square-free, then -$E[\ts]\leq 8n^2+ n\ln (n+1)$. +$E[\ts]\leq {\mathsf{N}}^2+ (\mathsf{N}+2)(\ln(\mathsf{N})+2)$. \end{Theo} -For each $X\in \Bool^n$ and $\ell\in\llbracket 1,n\rrbracket$, +For each $X\in \Bool^{\mathsf{N}}$ and $\ell\in\llbracket 1,{\mathsf{N}}\rrbracket$, let $S_{X,\ell}$ be the random variable that counts the number of steps from $X$ until we reach a configuration where $\ell$ is fair. More formally -$$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$ +$$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=\ell \text{ and } X_0=X\}.$$ We denote by $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$ @@ -268,39 +270,39 @@ $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$ \begin{Lemma}\label{prop:lambda} If $\ov{h}$ is a square-free bijective function, then the inequality -$E[\lambda_h]\leq 8n^2$ is established. +$E[\lambda_h]\leq 2{\mathsf{N}}^2$ is established. \end{Lemma} \begin{proof} -For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq -\frac{1}{4n^2}$. +For every $X$, every $\ell$, one has $\P(S_{X,\ell}\leq 2)\geq +\frac{1}{{\mathsf{N}}^2}$. Let $X_0= X$. Indeed, \begin{itemize} \item if $h(X)\neq \ell$, then -$\P(S_{X,\ell}=1)=\frac{1}{2n}\geq \frac{1}{4n^2}$. +$\P(S_{X,\ell}=1)=\frac{1}{{\mathsf{N}}}\geq \frac{1}{{\mathsf{N}}^2}$. \item otherwise, $h(X)=\ell$, then $\P(S_{X,\ell}=1)=0$. But in this case, intutively, it is possible to move -from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in +from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{N}$). And in $\ov{h}^{-1}(X)$ the $l$-th bit can be switched. More formally, since $\ov{h}$ is square-free, $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have -$P(X_1=\ov{h}^{-1}(X))=\frac{1}{2N}$. Now, by Lemma~\ref{lm:h}, +$P(X_1=\ov{h}^{-1}(X))=\frac{1}{{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid -X_1=\ov{h}^{-1}(X))=\frac{1}{2N}$, proving that $\P(S_{x,\ell}\leq 2)\geq -\frac{1}{4N^2}$. +X_1=\ov{h}^{-1}(X))=\frac{1}{{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq +\frac{1}{{\mathsf{N}}^2}$. \end{itemize} -Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{4n^2}$. By induction, one +Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{{\mathsf{N}}^2}$. By induction, one has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq -\left(1-\frac{1}{4n^2}\right)^i$. +\left(1-\frac{1}{{\mathsf{N}}^2}\right)^i$. Moreover, since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$ @@ -309,32 +311,57 @@ $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq \P(S_{X,\ell}\geq 1)+\P(S_{X,\ell}\geq 2)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$ Consequently, $$E[S_{X,\ell}]\leq 1+1+2 -\sum_{i=1}^{+\infty}\left(1-\frac{1}{4n^2}\right)^i=2+2(4n^2-1)=8n^2,$$ +\sum_{i=1}^{+\infty}\left(1-\frac{1}{{\mathsf{N}}^2}\right)^i=2+2({\mathsf{N}}^2-1)=2{\mathsf{N}}^2,$$ which concludes the proof. \end{proof} -Let $\ts^\prime$ be the first time that there are exactly $n-1$ fair +Let $\ts^\prime$ be the first time that there are exactly ${\mathsf{N}}-1$ fair elements. \begin{Lemma}\label{lm:stopprime} -One has $E[\ts^\prime]\leq n \ln (n+1).$ +One has $E[\ts^\prime]\leq (\mathsf{N}+2)(\ln(\mathsf{N})+2)$. \end{Lemma} \begin{proof} -This is a classical Coupon Collector's like problem. Let $W_i$ be the -random variable counting the number of moves done in the Markov chain while -we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{n-1}W_i$. - But when we are at position $X$ with $i-1$ fair bits, the probability of - obtaining a new fair bit is either $1-\frac{i-1}{n}$ if $h(X)$ is fair, - or $1-\frac{i-2}{n}$ if $h(X)$ is not fair. It follows that -$E[W_i]\leq \frac{n}{n-i+2}$. Therefore -$$E[\ts^\prime]=\sum_{i=1}^{n-1}E[W_i]\leq n\sum_{i=1}^{n-1} - \frac{1}{n-i+2}=n\sum_{i=3}^{n+1}\frac{1}{i}.$$ - -But $\sum_{i=1}^{n+1}\frac{1}{i}\leq 1+\ln(n+1)$. It follows that -$1+\frac{1}{2}+\sum_{i=3}^{n+1}\frac{1}{i}\leq 1+\ln(n+1).$ -Consequently, -$E[\ts^\prime]\leq n (-\frac{1}{2}+\ln(n+1))\leq n\ln(n+1)$. +This is a classical Coupon Collector's like problem. Let $W_i$ +be the time to obtain the $i$-th fair bit +after $i-1$ fair bits have been obtained. +One has $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}}W_i$. + +At position $X$ with $i-1$ fair bits, +we do not obtain a new fair if $Z$ is one of the $i-1$ already fair bits +or if $Z$ is a new fair bit but $h(X)$ is $Z$. +This occures with probability +$p += \frac{i-1}{{\mathsf{N}}} + \frac{n-i+1}{\mathsf{N}}.\frac{1}{\mathsf{N}} +=\frac{i(\mathsf{N}-1) +1}{\mathsf{N^2}} +$. +The random variable $W_i$ has a geometric distribution +\textit{i.e.}, $P(W_i = k) = p^{k-1}.(1-p)$ and +$E(W_i) = \frac{\mathsf{N^2}}{i(\mathsf{N}-1) +1}$. +Therefore +$$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}}E[W_i] +=\frac{\mathsf{N^2}}{\mathsf{N}(\mathsf{N}-1) +1} + \sum_{i=1}^{{\mathsf{N}}-1}E[W_i].$$ + +A simple study of the function $\mathsf{N} \mapsto \frac{\mathsf{N^2}}{\mathsf{N}(\mathsf{N}-1) +1}$ shows that it is bounded by $\frac{4}{3} \leq 2$. +For the second term, we successively have +$$ +\sum_{i=1}^{{\mathsf{N}}-1}E[W_i] += \mathsf{N}^2\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{i(\mathsf{N}-1) +1} +\leq \mathsf{N}^2\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{i(\mathsf{N}-1)} +\leq \frac{\mathsf{N}^2}{\mathsf{N}-1}\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{i} +\leq (\mathsf{N}+2)\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{i} +$$ + + +It is well known that +$\sum_{i=1}^{{\mathsf{N}}-1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}-1)$. +It follows that +$2+(\mathsf{N}+2)\sum_{i=1}^{{\mathsf{N}}-1}\frac{1}{i} +\leq +2+(\mathsf{N}+2)(\ln(\mathsf{N}-1)+1) +\leq +(\mathsf{N}+2)(\ln(\mathsf{N})+2)$. \end{proof} One can now prove Theorem~\ref{prop:stop}. -- 2.39.5