-
-
-
-
-
-
-
-\subsubsection{Network latency impacts on performance\\}
-
-\begin{table} [ht!]
-\centering
-\begin{tabular}{r c }
- \hline
- Grid Architecture & 2 $\times$ 16\\ %\hline
- \multirow{2}{*}{Inter Network N1} & $bw$=1Gbs, \\ %\hline
- & $lat$= From 8$\times$10$^{-6}$ to $6.10^{-5}$ second \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z} = 150 \times 150 \times 150$\\ \hline
- \end{tabular}
-\caption{Test conditions: network latency impacts}
-\label{tab:03}
-\end{table}
-
-\begin{figure} [htbp]
-\centering
-\includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
-\caption{Network latency impacts on execution time}
-%\AG{\np{E-6}}}
-\label{fig:03}
-\end{figure}
-
-In Table~\ref{tab:03}, parameters for the influence of the network latency are
-reported. According to the results of Figure~\ref{fig:03}, a degradation of the
-network latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time
-increase of more than $75\%$ (resp. $82\%$) of the execution for the classical
-GMRES (resp. Krylov multisplitting) algorithm. The execution time factor
-between the two algorithms varies from 2.2 to 1.5 times with a network latency
-decreasing from $8.10^{-6}$ to $6.10^{-5}$ second.
-
-
-\subsubsection{Network bandwidth impacts on performance\\}
-
-\begin{table} [ht!]
-\centering
-\begin{tabular}{r c }
- \hline
- Grid Architecture & 2 $\times$ 16\\ %\hline
-\multirow{2}{*}{Inter Network N1} & $bw$=From 1Gbs to 10 Gbs \\ %\hline
- & $lat$= 5.10$^{-5}$ second \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z} =150 \times 150 \times 150$\\ \hline \\
- \end{tabular}
-\caption{Test conditions: Network bandwidth impacts}
-% \RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}
-%\RCE{C est le bw}
-\label{tab:04}
-\end{table}
-
-
-\begin{figure} [htbp]
-\centering
-\includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
-\caption{Network bandwith impacts on execution time}
-%\AG{``Execution time'' avec un 't' minuscule}. Idem autres figures.}
-%\RCE{Corrige}
-\label{fig:04}
-\end{figure}
-
-The results of increasing the network bandwidth show the improvement of the
-performance for both algorithms by reducing the execution time (see
-Figure~\ref{fig:04}). However, in this case, the Krylov multisplitting method
-presents a better performance in the considered bandwidth interval with a gain
-of $40\%$ which is only around $24\%$ for the classical GMRES.
-
-\subsubsection{Input matrix size impacts on performance\\}
-
-\begin{table} [ht!]
-\centering
-\begin{tabular}{r c }
- \hline
- Grid Architecture & 4 $\times$ 8\\ %\hline
- Inter Network & $bw$=1Gbs - $lat$=5.10$^{-5}$ \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 50$^{3}$ to 190$^{3}$\\ \hline
- \end{tabular}
-\caption{Test conditions: Input matrix size impacts}
-\label{tab:05}
-\end{table}
-
-
-\begin{figure} [htbp]
-\centering
-\includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
-\caption{Problem size impacts on execution time}
-\label{fig:05}
-\end{figure}
-
-In these experiments, the input matrix size has been set from $50^3$ to
-$190^3$. Obviously, as shown in Figure~\ref{fig:05}, the execution time for both
-algorithms increases when the input matrix size also increases. For all problem
-sizes, GMRES is always slower than the Krylov multisplitting. Moreover, for this
-benchmark, it seems that the greater the problem size is, the bigger the ratio
-between both algorithm execution times is. We can also observ that for some
-problem sizes, the Krylov multisplitting convergence varies quite a
-lot. Consequently the execution times in that cases also varies.
-
-
-These findings may help a lot end users to setup the best and the optimal
-targeted environment for the application deployment when focusing on the problem
-size scale up. It should be noticed that the same test has been done with the
-grid 4 $\times$ 8 leading to the same conclusion.