-<<<<<<< HEAD
-In this section, we analyze the simulations conducted on various grid configurations presented in Table~\ref{tab:01}. Figure~\ref{fig:01} shows, for all grid configurations and a given matrix size, a non-variation in the number of iterations for the classical GMRES algorithm, which is not the case of the Krylov two-stage algorithm.
-%% First, the results in Figure~\ref{fig:01}
-%% show for all grid configurations the non-variation of the number of iterations of
-%% classical GMRES for a given input matrix size; it is not the case for the
-%% multisplitting method.
-\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
-\RC{Les légendes ne sont pas explicites...}
-=======
-
-
-
-
-In this section, we analyze the performance of algorithms running on various
-grid configurations (2 $\times$ 16, 4 $\times$ 8, 4 $\times$ 16 and 8 $\times$ 8) and using an inter-network N2 defined in the test conditions in Table~\ref{tab:01}. First, the results in Figure~\ref{fig:01}
-show for all grid configurations the non-variation of the number of iterations of
-classical GMRES for a given input matrix size; it is not the case for the
-multisplitting method.
-
-%\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
-%\RC{Les légendes ne sont pas explicites...}
->>>>>>> 2f78f080350308e2f46d8eff8d66a8e127fee583
-
-\begin{figure} [ht!]
- \begin{center}
- \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
- \end{center}
- \caption{Various grid configurations with the matrix sizes 150$^3$ and 170$^3$
-\AG{Utiliser le point comme séparateur décimal et non la virgule. Idem dans les autres figures.}}
-\LZK{Pour quelle taille du problème sont calculés les nombres d'itérations? Que représente le 2 Clusters x 16 Nodes with Nx=150 and Nx=170 en haut de la figure?}
- \label{fig:01}
-\end{figure}
-
-<<<<<<< HEAD
-The execution times between the two algorithms is significant with different
-grid architectures, even with the same number of processors (for example, 2x16
-and 4x8). We can observe the low sensitivity of the Krylov multisplitting method
-(compared with the classical GMRES) when scaling up the number of the processors
-in the grid: in average, the GMRES (resp. Multisplitting) algorithm performs
-$40\%$ better (resp. $48\%$) when running from 2x16=32 to 8x8=64 processors.
-\RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?}
-\LZK{A revoir toute cette analyse... Le multi est plus performant que GMRES. Les temps d'exécution de multi sont sensibles au nombre de CLUSTERS. Il est moins performant pour un nombre grand de cluster. Avez vous d'autres remarques?}
-=======
-
-Secondly, the execution times between the two algorithms is significant with different
-grid architectures, even with the same number of processors (for example, 2 $\times$ 16
-and 4 $\times$ 8). We can observ the sensitivity of the Krylov multisplitting method
-(compared with the classical GMRES) when scaling up the number of the processors
-in the grid: in average, the reduction of the execution time for GMRES (resp. Multisplitting) algorithm is around $40\%$ (resp. around $48\%$) when running from 32 (grid 2 $\times$ 16) to 64 processors (grid 8 $\times$ 8) processors. \RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?}
->>>>>>> 2f78f080350308e2f46d8eff8d66a8e127fee583
-
-\subsubsection{Simulations for two different inter-clusters network speeds \\}
-
-\begin{table} [ht!]
+\subsubsection{Simulations for various grid architectures and scaling-up matrix sizes\\}
+
+In this section, we analyze the simulations conducted on various grid
+configurations and for different sizes of the 3D Poisson problem. The parameters
+of the network between clusters is fixed to $N2$ (see
+Table~\ref{tab:01}). Figure~\ref{fig:01} shows, for all grid configurations and
+a given matrix size of 170$^3$ elements, a non-variation in the number of
+iterations for the classical GMRES algorithm, which is not the case of the
+Krylov two-stage algorithm. In fact, with multisplitting algorithms, the number
+of splitting (in our case, it is equal to the number of clusters) influences on the
+convergence speed. The higher the number of splitting is, the slower the
+convergence of the algorithm is (see the output results obtained from
+configurations 2$\times$16 vs. 4$\times$8 and configurations 4$\times$16 vs.
+8$\times$8).
+
+The execution times between both algorithms is significant with different grid
+architectures. The synchronous Krylov two-stage algorithm presents better
+performances than the GMRES algorithm, even for a high number of clusters (about
+$32\%$ more efficient on a grid of 8$\times$8 than GMRES). In addition, we can
+observe a better sensitivity of the Krylov two-stage algorithm (compared to the
+GMRES one) when scaling up the number of the processors in the computational
+grid: the Krylov two-stage algorithm is about $48\%$ and the GMRES algorithm is
+about $40\%$ better on $64$ processors (grid of 8$\times$8) than $32$ processors
+(grid of 2$\times$16).
+
+\begin{figure}[ht]