+\section{SimGrid}
+\label{sec:simgrid}
+SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} is a discrete event simulation framework to study the behavior of large-scale distributed computing platforms as Grids, Peer-to-Peer systems, Clouds and High Performance Computation systems. It is widely used to simulate and evaluate heuristics, prototype applications or even assess legacy MPI applications. It is still actively developed by the scientific community and distributed as an open source software.
+
+%%%%%%%%%%%%%%%%%%%%%%%%%
+% SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile}
+% is a simulation framework to study the behavior of large-scale distributed
+% systems. As its name suggests, it emanates from the grid computing community,
+% but is nowadays used to study grids, clouds, HPC or peer-to-peer systems. The
+% early versions of SimGrid date back from 1999, but it is still actively
+% developed and distributed as an open source software. Today, it is one of the
+% major generic tools in the field of simulation for large-scale distributed
+% systems.
+
+SimGrid provides several programming interfaces: MSG to simulate Concurrent
+Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to
+run real applications written in MPI~\cite{MPI}. Apart from the native C
+interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming
+languages. SMPI is the interface that has been used for the work described in
+this paper. The SMPI interface implements about \np[\%]{80} of the MPI 2.0
+standard~\cite{bedaride+degomme+genaud+al.2013.toward}, and supports
+applications written in C or Fortran, with little or no modifications (cf Section IV - paragraph B).
+
+Within SimGrid, the execution of a distributed application is simulated by a
+single process. The application code is really executed, but some operations,
+like communications, are intercepted, and their running time is computed
+according to the characteristics of the simulated execution platform. The
+description of this target platform is given as an input for the execution, by
+means of an XML file. It describes the properties of the platform, such as
+the computing nodes with their computing power, the interconnection links with
+their bandwidth and latency, and the routing strategy. The scheduling of the
+simulated processes, as well as the simulated running time of the application
+are computed according to these properties.
+
+To compute the durations of the operations in the simulated world, and to take
+into account resource sharing (e.g. bandwidth sharing between competing
+communications), SimGrid uses a fluid model. This allows users to run relatively fast
+simulations, while still keeping accurate
+results~\cite{bedaride+degomme+genaud+al.2013.toward,
+ velho+schnorr+casanova+al.2013.validity}. Moreover, depending on the
+simulated application, SimGrid/SMPI allows to skip long lasting computations and
+to only take their duration into account. When the real computations cannot be
+skipped, but the results are unimportant for the simulation results, it is
+also possible to share dynamically allocated data structures between
+several simulated processes, and thus to reduce the whole memory consumption.
+These two techniques can help to run simulations on a very large scale.
+
+The validity of simulations with SimGrid has been asserted by several studies.
+See, for example, \cite{velho+schnorr+casanova+al.2013.validity} and articles
+referenced therein for the validity of the network models. Comparisons between
+real execution of MPI applications on the one hand, and their simulation with
+SMPI on the other hand, are presented in~\cite{guermouche+renard.2010.first,
+ clauss+stillwell+genaud+al.2011.single,
+ bedaride+degomme+genaud+al.2013.toward}. All these works conclude that
+SimGrid is able to simulate pretty accurately the real behavior of the
+applications.
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{Two-stage multisplitting methods}
+\label{sec:04}
+\subsection{Synchronous and asynchronous two-stage methods for sparse linear systems}
+\label{sec:04.01}
+In this paper we focus on two-stage multisplitting methods in their both versions (synchronous and asynchronous)~\cite{Frommer92,Szyld92,Bru95}. These iterative methods are based on multisplitting methods~\cite{O'leary85,White86,Alefeld97} and use two nested iterations: the outer iteration and the inner iteration. Let us consider the following sparse linear system of $n$ equations in $\mathbb{R}$:
+\begin{equation}
+Ax=b,
+\label{eq:01}
+\end{equation}
+where $A$ is a sparse square and nonsingular matrix, $b$ is the right-hand side and $x$ is the solution of the system. Our work in this paper is restricted to the block Jacobi splitting method. This approach of multisplitting consists in partitioning the matrix $A$ into $L$ horizontal band matrices of order $\frac{n}{L}\times n$ without overlapping (i.e. sub-vectors $\{x_\ell\}_{1\leq\ell\leq L}$ are disjoint). Two-stage multisplitting methods solve the linear system~(\ref{eq:01}) iteratively as follows:
+\begin{equation}
+x_\ell^{k+1} = A_{\ell\ell}^{-1}(b_\ell - \displaystyle\sum^{L}_{\substack{m=1\\m\neq\ell}}{A_{\ell m}x^k_m}),\mbox{~for~}\ell=1,\ldots,L\mbox{~and~}k=1,2,3,\ldots
+\label{eq:02}
+\end{equation}
+where $x_\ell$ are sub-vectors of the solution $x$, $b_\ell$ are the sub-vectors of the right-hand side $b$, and $A_{\ell\ell}$ and $A_{\ell m}$ are diagonal and off-diagonal blocks of matrix $A$ respectively. The iterations of these methods can naturally be computed in parallel such that each processor or cluster of processors is responsible for solving one splitting as a linear sub-system:
+\begin{equation}
+A_{\ell\ell} x_\ell = c_\ell,\mbox{~for~}\ell=1,\ldots,L,
+\label{eq:03}
+\end{equation}
+where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}.
+
+\begin{figure}[t]
+%\begin{algorithm}[t]
+%\caption{Block Jacobi two-stage multisplitting method}
+\begin{algorithmic}[1]
+ \Input $A_\ell$ (sparse matrix), $b_\ell$ (right-hand side)
+ \Output $x_\ell$ (solution vector)\vspace{0.2cm}
+ \State Set the initial guess $x^0$
+ \For {$k=1,2,3,\ldots$ until convergence}
+ \State $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m^{k-1}$
+ \State $x^k_\ell=Solve_{gmres}(A_{\ell\ell},c_\ell,x^{k-1}_\ell,\MIG,\TOLG)$\label{solve}
+ \State Send $x_\ell^k$ to neighboring clusters\label{send}
+ \State Receive $\{x_m^k\}_{m\neq\ell}$ from neighboring clusters\label{recv}
+ \EndFor
+\end{algorithmic}
+\caption{Block Jacobi two-stage multisplitting method}
+\label{alg:01}
+%\end{algorithm}
+\end{figure}
+
+In this paper, we propose two algorithms of two-stage multisplitting methods. The first algorithm is based on the asynchronous model which allows communications to be overlapped by computations and reduces the idle times resulting from the synchronizations. So in the asynchronous mode, our two-stage algorithm uses asynchronous outer iterations and asynchronous communications between clusters. The communications (i.e. lines~\ref{send} and~\ref{recv} in Figure~\ref{alg:01}) are performed by message passing using MPI non-blocking communication routines. The convergence of the asynchronous iterations is detected when all clusters have locally converged:
+\begin{equation}
+k\geq\MIM\mbox{~or~}\|x_\ell^{k+1}-x_\ell^k\|_{\infty }\leq\TOLM,
+\label{eq:04}
+\end{equation}
+where $\MIM$ is the maximum number of outer iterations and $\TOLM$ is the tolerance threshold for the two-stage algorithm.
+
+The second two-stage algorithm is based on synchronous outer iterations. We propose to use the Krylov iteration based on residual minimization to improve the slow convergence of the multisplitting methods. In this case, a $n\times s$ matrix $S$ is set using solutions issued from the inner iteration:
+\begin{equation}
+S=[x^1,x^2,\ldots,x^s],~s\ll n.
+\label{eq:05}
+\end{equation}
+At each $s$ outer iterations, the algorithm computes a new approximation $\tilde{x}=S\alpha$ which minimizes the residual:
+\begin{equation}
+\min_{\alpha\in\mathbb{R}^s}{\|b-AS\alpha\|_2}.
+\label{eq:06}
+\end{equation}
+The algorithm in Figure~\ref{alg:02} includes the procedure of the residual minimization and the outer iteration is restarted with a new approximation $\tilde{x}$ at every $s$ iterations. The least-squares problem~(\ref{eq:06}) is solved in parallel by all clusters using CGLS method~\cite{Hestenes52} such that $\MIC$ is the maximum number of iterations and $\TOLC$ is the tolerance threshold for this method (line~\ref{cgls} in Figure~\ref{alg:02}).
+
+\begin{figure}[t]
+%\begin{algorithm}[t]
+%\caption{Krylov two-stage method using block Jacobi multisplitting}
+\begin{algorithmic}[1]
+ \Input $A_\ell$ (sparse matrix), $b_\ell$ (right-hand side)
+ \Output $x_\ell$ (solution vector)\vspace{0.2cm}
+ \State Set the initial guess $x^0$
+ \For {$k=1,2,3,\ldots$ until convergence}
+ \State $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m^{k-1}$
+ \State $x^k_\ell=Solve_{gmres}(A_{\ell\ell},c_\ell,x^{k-1}_\ell,\MIG,\TOLG)$
+ \State $S_{\ell,k\mod s}=x_\ell^k$
+ \If{$k\mod s = 0$}
+ \State $\alpha = Solve_{cgls}(AS,b,\MIC,\TOLC)$\label{cgls}
+ \State $\tilde{x_\ell}=S_\ell\alpha$
+ \State Send $\tilde{x_\ell}$ to neighboring clusters
+ \Else
+ \State Send $x_\ell^k$ to neighboring clusters
+ \EndIf
+ \State Receive $\{x_m^k\}_{m\neq\ell}$ from neighboring clusters
+ \EndFor
+\end{algorithmic}
+\caption{Krylov two-stage method using block Jacobi multisplitting}
+\label{alg:02}
+%\end{algorithm}
+\end{figure}
+
+\subsection{Simulation of the two-stage methods using SimGrid toolkit}
+\label{sec:04.02}
+
+One of our objectives when simulating the application in SimGrid is, as in real
+life, to get accurate results (solutions of the problem) but also to ensure the
+test reproducibility under the same conditions. According to our experience,
+very few modifications are required to adapt a MPI program for the SimGrid
+simulator using SMPI (Simulator MPI). The first modification is to include SMPI
+libraries and related header files (\verb+smpi.h+). The second modification is to
+suppress all global variables by replacing them with local variables or using a
+SimGrid selector called "runtime automatic switching"
+(smpi/privatize\_global\_variables). Indeed, global variables can generate side
+effects on runtime between the threads running in the same process and generated by
+SimGrid to simulate the grid environment.
+
+\paragraph{Parameters of the simulation in SimGrid}
+\ \\ \noindent Before running a SimGrid benchmark, many parameters for the
+computation platform must be defined. For our experiments, we consider platforms
+in which several clusters are geographically distant, so there are intra and
+inter-cluster communications. In the following, these parameters are described:
+
+\begin{itemize}
+ \item hostfile: hosts description file.
+ \item platform: file describing the platform architecture: clusters (CPU power,
+\dots{}), intra cluster network description, inter cluster network (bandwidth $bw$,
+latency $lat$, \dots{}).
+ \item archi : grid computational description (number of clusters, number of
+nodes/processors in each cluster).
+\end{itemize}
+\noindent
+In addition, the following arguments are given to the programs at runtime:
+
+\begin{itemize}
+ \item maximum number of inner iterations $\MIG$ and outer iterations $\MIM$,
+ \item inner precision $\TOLG$ and outer precision $\TOLM$,
+ \item matrix sizes of the problem: N$_{x}$, N$_{y}$ and N$_{z}$ on axis $x$, $y$ and $z$ respectively (in our experiments, we solve 3D problem, see Section~\ref{3dpoisson}),
+ \item matrix diagonal value is fixed to $6.0$ for synchronous experiments and $6.2$ for asynchronous ones,
+ \item matrix off-diagonal value is fixed to $-1.0$,
+ \item number of vectors in matrix $S$ (i.e. value of $s$),
+ \item maximum number of iterations $\MIC$ and precision $\TOLC$ for CGLS method,
+ \item maximum number of iterations and precision for the classical GMRES method,
+ \item maximum number of restarts for the Arnorldi process in GMRES method,
+ \item execution mode: synchronous or asynchronous.
+\end{itemize}
+
+It should also be noticed that both solvers have been executed with the SimGrid selector \texttt{-cfg=smpi/running\_power} which determines the computational power (here 19GFlops) of the simulator host machine.
+
+%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{Experimental results}
+\label{sec:expe}
+
+In this section, experiments for both multisplitting algorithms are reported. First the 3D Poisson problem used in our experiments is described.
+
+\subsection{The 3D Poisson problem}
+\label{3dpoisson}
+
+
+We use our two-stage algorithms to solve the well-known Poisson problem $\nabla^2\phi=f$~\cite{Polyanin01}. In three-dimensional Cartesian coordinates in $\mathbb{R}^3$, the problem takes the following form:
+\begin{equation}
+\frac{\partial^2}{\partial x^2}\phi(x,y,z)+\frac{\partial^2}{\partial y^2}\phi(x,y,z)+\frac{\partial^2}{\partial z^2}\phi(x,y,z)=f(x,y,z)\mbox{~in the domain~}\Omega
+\label{eq:07}
+\end{equation}
+such that:
+\begin{equation*}
+\phi(x,y,z)=0\mbox{~on the boundary~}\partial\Omega
+\end{equation*}
+where the real-valued function $\phi(x,y,z)$ is the solution sought, $f(x,y,z)$ is a known function and $\Omega=[0,1]^3$. The 3D discretization of the Laplace operator $\nabla^2$ with the finite difference scheme includes 7 points stencil on the computational grid. The numerical approximation of the Poisson problem on three-dimensional grid is repeatedly computed as $\phi=\phi^\star$ such that:
+\begin{equation}
+\begin{array}{ll}
+\phi^\star(x,y,z)=&\frac{1}{6}(\phi(x-h,y,z)+\phi(x,y-h,z)+\phi(x,y,z-h)\\&+\phi(x+h,y,z)+\phi(x,y+h,z)+\phi(x,y,z+h)\\&-h^2f(x,y,z))
+\end{array}
+\label{eq:08}
+\end{equation}
+until convergence where $h$ is the grid spacing between two adjacent elements in the 3D computational grid.
+
+In the parallel context, the 3D Poisson problem is partitioned into $L\times p$ sub-problems such that $L$ is the number of clusters and $p$ is the number of processors in each cluster. We apply the three-dimensional partitioning instead of the row-by-row one in order to reduce the size of the data shared at the sub-problems boundaries. In this case, each processor is in charge of parallelepipedic block of the problem and has at most six neighbors in the same cluster or in distant clusters with which it shares data at boundaries.
+
+\subsection{Study setup and simulation methodology}
+
+First, to conduct our study, we propose the following methodology
+which can be reused for any grid-enabled applications.\\
+
+\textbf{Step 1}: Choose with the end users the class of algorithms or
+the application to be tested. Numerical parallel iterative algorithms
+have been chosen for the study in this paper. \\
+
+\textbf{Step 2}: Collect the software materials needed for the experimentation.
+In our case, we have two variants algorithms for the resolution of the
+3D-Poisson problem: (1) using the classical GMRES; (2) and the multisplitting
+method. In addition, the SimGrid simulator has been chosen to simulate the
+behaviors of the distributed applications. SimGrid is running in a virtual
+machine on a simple laptop. \\
+
+\textbf{Step 3}: Fix the criteria which will be used for the future
+results comparison and analysis. In the scope of this study, we retain
+on the one hand the algorithm execution mode (synchronous and asynchronous)
+and on the other hand the execution time and the number of iterations to reach the convergence. \\
+
+\textbf{Step 4 }: Set up the different grid testbed environments that will be
+simulated in the simulator tool to run the program. The following architectures
+have been configured in SimGrid : 2$\times$16, 4$\times$8, 4$\times$16, 8$\times$8 and 2$\times$50. The first number
+represents the number of clusters in the grid and the second number represents
+the number of hosts (processors/cores) in each cluster. The network has been
+designed to operate with a bandwidth equals to 10Gbits (resp. 1Gbits/s) and a
+latency of 8.10$^{-6}$ seconds (resp. 5.10$^{-5}$) for the intra-clusters links
+(resp. inter-clusters backbone links). \\
+
+\textbf{Step 5}: Conduct an extensive and comprehensive testings
+within these configurations by varying the key parameters, especially
+the CPU power capacity, the network parameters and also the size of the
+input data. \\
+
+\textbf{Step 6} : Collect and analyze the output results.
+
+\subsection{Factors impacting distributed applications performance in a grid environment}
+
+When running a distributed application in a computational grid, many factors may
+have a strong impact on the performance. First of all, the architecture of the
+grid itself can obviously influence the performance results of the program. The
+performance gain might be important theoretically when the number of clusters
+and/or the number of nodes (processors/cores) in each individual cluster
+increase.
+
+Another important factor impacting the overall performance of the application
+is the network configuration. Two main network parameters can modify drastically
+the program output results:
+\begin{enumerate}
+\item the network bandwidth ($bw$ in bits/s) also known as "the data-carrying
+ capacity" of the network is defined as the maximum of data that can transit
+ from one point to another in a unit of time.
+\item the network latency ($lat$ in microseconds) defined as the delay from the
+ start time to send a simple data from a source to a destination.
+\end{enumerate}
+Upon the network characteristics, another impacting factor is the volume of data exchanged between the nodes in the cluster
+and between distant clusters. This parameter is application dependent.
+
+ In a grid environment, it is common to distinguish, on the one hand, the
+ "intra-network" which refers to the links between nodes within a cluster and
+ on the other hand, the "inter-network" which is the backbone link between
+ clusters. In practice, these two networks have different speeds.
+ The intra-network generally works like a high speed local network with a
+ high bandwidth and very low latency. In opposite, the inter-network connects
+ clusters sometime via heterogeneous networks components through internet with
+ a lower speed. The network between distant clusters might be a bottleneck
+ for the global performance of the application.
+
+\subsection{Comparison of GMRES and Krylov Multisplitting algorithms in synchronous mode}
+
+In the scope of this paper, our first objective is to analyze when the Krylov
+Multisplitting method has better performance than the classical GMRES
+method. With a synchronous iterative method, better performance means a
+smaller number of iterations and execution time before reaching the convergence.
+For a systematic study, the experiments should figure out that, for various
+grid parameters values, the simulator will confirm the targeted outcomes,
+particularly for poor and slow networks, focusing on the impact on the
+communication performance on the chosen class of algorithm.
+
+The following paragraphs present the test conditions, the output results
+and our comments.\\
+
+
+\subsubsection{Execution of the algorithms on various computational grid
+architectures and scaling up the input matrix size}
+\ \\
+% environment
+
+\begin{table} [ht!]
+\begin{center}
+\begin{tabular}{r c }
+ \hline
+ Grid Architecture & 2 $\times$ 16, 4 $\times$ 8, 4 $\times$ 16 and 8 $\times$ 8\\ %\hline
+ Inter Network N2 & bw=1Gbits/s - lat=5.10$^{-5}$ \\ %\hline
+ Input matrix size & N$_{x}$ $\times$ N$_{y}$ $\times$ N$_{z}$ =150 $\times$ 150 $\times$ 150\\ %\hline
+ - & N$_{x}$ $\times$ N$_{y}$ $\times$ N$_{z}$ =170 $\times$ 170 $\times$ 170 \\ \hline
+ \end{tabular}
+\caption{Test conditions: various grid configurations with the input matrix size N$_{x}$=N$_{y}$=N$_{z}$=150 or 170 \RC{N2 n'est pas défini..}\RC{Nx est défini, Ny? Nz?}
+\AG{La lettre 'x' n'est pas le symbole de la multiplication. Utiliser \texttt{\textbackslash times}. Idem dans le texte, les figures, etc.}}
+\label{tab:01}
+\end{center}
+\end{table}
+
+
+
+
+
+In this section, we analyze the performance of algorithms running on various
+grid configurations (2 $\times$ 16, 4 $\times$ 8, 4 $\times$ 16 and 8 $\times$ 8) and using an inter-network N2 defined in the test conditions in Table~\ref{tab:01}. First, the results in Figure~\ref{fig:01}
+show for all grid configurations the non-variation of the number of iterations of
+classical GMRES for a given input matrix size; it is not the case for the
+multisplitting method.
+
+%\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
+%\RC{Les légendes ne sont pas explicites...}
+
+
+\begin{figure} [ht!]
+ \begin{center}
+ \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
+ \end{center}
+ \caption{Various grid configurations with the input matrix size $N_{x}=150$ and $N_{x}=170$\RC{idem}
+\AG{Utiliser le point comme séparateur décimal et non la virgule. Idem dans les autres figures.}}
+ \label{fig:01}
+\end{figure}
+
+
+Secondly, the execution times between the two algorithms is significant with different
+grid architectures, even with the same number of processors (for example, 2 $\times$ 16
+and 4 $\times$ 8). We can observ the sensitivity of the Krylov multisplitting method
+(compared with the classical GMRES) when scaling up the number of the processors
+in the grid: in average, the reduction of the execution time for GMRES (resp. Multisplitting) algorithm is around $40\%$ (resp. around $48\%$) when running from 32 (grid 2 $\times$ 16) to 64 processors (grid 8 $\times$ 8) processors. \RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?}
+
+\subsubsection{Running on two different inter-clusters network speeds \\}
+
+\begin{table} [ht!]
+\begin{center}
+\begin{tabular}{r c }
+ \hline
+ Grid Architecture & 2 $\times$ 16, 4 $\times$ 8\\ %\hline
+ Inter Networks & N1 : bw=10Gbs-lat=8.10$^{-6}$ \\ %\hline
+ - & N2 : bw=1Gbs-lat=5.10$^{-5}$ \\
+ Input matrix size & $N_{x} \times N_{y} \times N_{z} =150 \times 150 \times 150$\\ \hline
+ \end{tabular}
+\caption{Test conditions: grid 2 $\times$ 16 and 4 $\times$ 8 with networks N1 vs N2}
+\label{tab:02}
+\end{center}
+\end{table}
+
+In this section, the experiments compare the behavior of the algorithms running on a
+speeder inter-cluster network (N1) and also on a less performant network (N2) respectively defined in the test conditions Table~\ref{tab:02}. \RC{Il faut définir cela avant...}
+Figure~\ref{fig:02} shows that end users will reduce the execution time
+for both algorithms when using a grid architecture like 4 $\times$ 16 or 8 $\times$ 8: the reduction is about $2$. The results depict also that when
+the network speed drops down (variation of 12.5\%), the difference between the two Multisplitting algorithms execution times can reach more than 25\%.
+
+
+
+%\begin{wrapfigure}{l}{100mm}
+\begin{figure} [ht!]
+\centering
+\includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
+\caption{Grid 2 $\times$ 16 and 4 $\times$ 8 with networks N1 vs N2
+\AG{\np{8E-6}, \np{5E-6} au lieu de 8E-6, 5E-6}}
+\label{fig:02}
+\end{figure}
+%\end{wrapfigure}
+
+
+\subsubsection{Network latency impacts on performance}
+\ \\
+\begin{table} [ht!]
+\centering
+\begin{tabular}{r c }
+ \hline
+ Grid Architecture & 2 $\times$ 16\\ %\hline
+ Network & N1 : bw=1Gbs \\ %\hline
+ Input matrix size & $N_{x} \times N_{y} \times N_{z} = 150 \times 150 \times 150$\\ \hline
+ \end{tabular}
+\caption{Test conditions: network latency impacts}
+\label{tab:03}
+\end{table}
+
+
+
+\begin{figure} [ht!]
+\centering
+\includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
+\caption{Network latency impacts on execution time
+\AG{\np{E-6}}}
+\label{fig:03}
+\end{figure}
+
+
+According to the results of Figure~\ref{fig:03}, a degradation of the network
+latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time increase of
+more than $75\%$ (resp. $82\%$) of the execution for the classical GMRES
+(resp. Krylov multisplitting) algorithm. In addition, it appears that the
+Krylov multisplitting method tolerates more the network latency variation with a
+less rate increase of the execution time.\RC{Les 2 précédentes phrases me
+ semblent en contradiction....} Consequently, in the worst case ($lat=6.10^{-5
+}$), the execution time for GMRES is almost the double than the time of the
+Krylov multisplitting, even though, the performance was on the same order of
+magnitude with a latency of $8.10^{-6}$.
+
+\subsubsection{Network bandwidth impacts on performance}
+\ \\
+\begin{table} [ht!]
+\centering
+\begin{tabular}{r c }
+ \hline
+ Grid Architecture & 2 $\times$ 16\\ %\hline
+ Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
+ Input matrix size & $N_{x} \times N_{y} \times N_{z} =150 \times 150 \times 150$\\ \hline \\
+ \end{tabular}
+\caption{Test conditions: Network bandwidth impacts\RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}}
+\label{tab:04}
+\end{table}
+
+
+\begin{figure} [ht!]
+\centering
+\includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
+\caption{Network bandwith impacts on execution time
+\AG{``Execution time'' avec un 't' minuscule}. Idem autres figures.}
+\label{fig:04}
+\end{figure}
+
+The results of increasing the network bandwidth show the improvement of the
+performance for both algorithms by reducing the execution time (see
+Figure~\ref{fig:04}). However, in this case, the Krylov multisplitting method
+presents a better performance in the considered bandwidth interval with a gain
+of $40\%$ which is only around $24\%$ for the classical GMRES.
+
+\subsubsection{Input matrix size impacts on performance}
+\ \\
+\begin{table} [ht!]
+\centering
+\begin{tabular}{r c }
+ \hline
+ Grid Architecture & 4 $\times$ 8\\ %\hline
+ Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\
+ Input matrix size & $N_{x}$ = From 40 to 200\\ \hline
+ \end{tabular}
+\caption{Test conditions: Input matrix size impacts}
+\label{tab:05}
+\end{table}
+
+
+\begin{figure} [ht!]
+\centering
+\includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
+\caption{Problem size impacts on execution time}
+\label{fig:05}
+\end{figure}
+
+In these experiments, the input matrix size has been set from $N_{x} = N_{y}
+= N_{z} = 40$ to $200$ side elements that is from $40^{3} = 64.000$ to $200^{3}
+= 8,000,000$ points. Obviously, as shown in Figure~\ref{fig:05}, the execution
+time for both algorithms increases when the input matrix size also increases.
+But the interesting results are:
+\begin{enumerate}
+ \item the drastic increase ($10$ times) of the number of iterations needed to
+ reach the convergence for the classical GMRES algorithm when the matrix size
+ go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire}
+\item the classical GMRES execution time is almost the double for $N_{x}=140$
+ compared with the Krylov multisplitting method.
+\end{enumerate}
+
+These findings may help a lot end users to setup the best and the optimal
+targeted environment for the application deployment when focusing on the problem
+size scale up. It should be noticed that the same test has been done with the
+grid 2 $\times$ 16 leading to the same conclusion.
+
+\subsubsection{CPU Power impacts on performance}
+
+\begin{table} [ht!]
+\centering
+\begin{tabular}{r c }
+ \hline
+ Grid architecture & 2 $\times$ 16\\ %\hline
+ Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
+ Input matrix size & $N_{x} = 150 \times 150 \times 150$\\ \hline
+ \end{tabular}
+\caption{Test conditions: CPU Power impacts}
+\label{tab:06}
+\end{table}
+
+\begin{figure} [ht!]
+\centering
+\includegraphics[width=100mm]{cpu_power_impact_on_execution_time.pdf}
+\caption{CPU Power impacts on execution time}
+\label{fig:06}
+\end{figure}
+
+Using the Simgrid simulator flexibility, we have tried to determine the impact
+on the algorithms performance in varying the CPU power of the clusters nodes
+from $1$ to $19$ GFlops. The outputs depicted in Figure~\ref{fig:06} confirm the
+performance gain, around $95\%$ for both of the two methods, after adding more
+powerful CPU.
+\ \\
+%\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà
+%obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas
+%besoin de déployer sur une archi réelle}
+
+To conclude these series of experiments, with SimGrid we have been able to make
+many simulations with many parameters variations. Doing all these experiments
+with a real platform is most of the time not possible. Moreover the behavior of
+both GMRES and Krylov multisplitting methods is in accordance with larger real
+executions on large scale supercomputer~\cite{couturier15}.
+
+
+\subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode}
+
+The previous paragraphs put in evidence the interests to simulate the behavior
+of the application before any deployment in a real environment. In this
+section, following the same previous methodology, our goal is to compare the
+efficiency of the multisplitting method in \textit{ asynchronous mode} compared with the
+classical GMRES in \textit{synchronous mode}.
+
+The interest of using an asynchronous algorithm is that there is no more
+synchronization. With geographically distant clusters, this may be essential.
+In this case, each processor can compute its iteration freely without any
+synchronization with the other processors. Thus, the asynchronous may
+theoretically reduce the overall execution time and can improve the algorithm
+performance.
+
+\RC{la phrase suivante est bizarre, je ne comprends pas pourquoi elle vient ici}
+In this section, Simgrid simulator tool has been successfully used to show
+the efficiency of the multisplitting in asynchronous mode and to find the best
+combination of the grid resources (CPU, Network, input matrix size, \ldots ) to
+get the highest \textit{"relative gain"} (exec\_time$_{GMRES}$ /
+exec\_time$_{multisplitting}$) in comparison with the classical GMRES time.
+
+
+The test conditions are summarized in the table~\ref{tab:07}: \\
+
+\begin{table} [ht!]
+\centering
+\begin{tabular}{r c }
+ \hline
+ Grid Architecture & 2 $\times$ 50 totaling 100 processors\\ %\hline
+ Processors Power & 1 GFlops to 1.5 GFlops\\
+ Intra-Network & bw=1.25 Gbits - lat=5.10$^{-5}$ \\ %\hline
+ Inter-Network & bw=5 Mbits - lat=2.10$^{-2}$\\
+ Input matrix size & $N_{x}$ = From 62 to 150\\ %\hline
+ Residual error precision & 10$^{-5}$ to 10$^{-9}$\\ \hline \\
+ \end{tabular}
+\caption{Test conditions: GMRES in synchronous mode vs Krylov Multisplitting in asynchronous mode}
+\label{tab:07}
+\end{table}
+
+Again, comprehensive and extensive tests have been conducted with different
+parameters as the CPU power, the network parameters (bandwidth and latency)
+and with different problem size. The relative gains greater than $1$ between the
+two algorithms have been captured after each step of the test. In
+Table~\ref{tab:08} are reported the best grid configurations allowing
+the multisplitting method to be more than $2.5$ times faster than the
+classical GMRES. These experiments also show the relative tolerance of the
+multisplitting algorithm when using a low speed network as usually observed with
+geographically distant clusters through the internet.
+
+% use the same column width for the following three tables
+\newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
+\newenvironment{mytable}[1]{% #1: number of columns for data
+ \renewcommand{\arraystretch}{1.3}%
+ \begin{tabular}{|>{\bfseries}r%
+ |*{#1}{>{\centering\arraybackslash}p{\mytablew}|}}}{%
+ \end{tabular}}
+
+
+\begin{table}[!t]
+\centering
+%\begin{table}
+% \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES}
+% \label{"Table 7"}
+ \begin{mytable}{11}
+ \hline
+ bandwidth (Mbit/s)
+ & 5 & 5 & 5 & 5 & 5 & 50 & 50 & 50 & 50 & 50 \\
+ \hline
+ latency (ms)
+ & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 \\
+ \hline
+ power (GFlops)
+ & 1 & 1 & 1 & 1.5 & 1.5 & 1.5 & 1.5 & 1 & 1.5 & 1.5 \\
+ \hline
+ size (N)
+ & 62 & 62 & 62 & 100 & 100 & 110 & 120 & 130 & 140 & 150 \\
+ \hline
+ Precision
+ & \np{E-5} & \np{E-8} & \np{E-9} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11}\\
+ \hline
+ Relative gain
+ & 2.52 & 2.55 & 2.52 & 2.57 & 2.54 & 2.53 & 2.51 & 2.58 & 2.55 & 2.54 \\
+ \hline
+ \end{mytable}
+%\end{table}
+ \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES}
+ \label{tab:08}
+\end{table}