\todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
\newcommand{\RCE}[2][inline]{%
\todo[color=yellow!10,#1]{\sffamily\textbf{RCE:} #2}\xspace}
+\newcommand{\DL}[2][inline]{%
+ \todo[color=pink!10,#1]{\sffamily\textbf{DL:} #2}\xspace}
\algnewcommand\algorithmicinput{\textbf{Input:}}
\algnewcommand\Input{\item[\algorithmicinput]}
In addition, the following arguments are given to the programs at runtime:
\begin{itemize}
- \item maximum number of inner and outer iterations;
- \item inner and outer precisions;
- \item maximum number of the GMRES restarts in the Arnorldi process;
- \item maximum number of iterations and the tolerance threshold in classical GMRES;
- \item tolerance threshold for outer and inner-iterations;
- \item matrix size (N$_{x}$, N$_{y}$ and N$_{z}$) respectively on $x, y, z$ axis;
- \item matrix diagonal value is fixed to $6.0$ for synchronous Krylov multisplitting experiments and $6.2$ for asynchronous block Jacobi experiments; \RC{CE tu vérifies, je dis ca de tête}
- \item matrix off-diagonal value;
- \item execution mode: synchronous or asynchronous;
- \RCE {C'est ok la liste des arguments du programme mais si Lilia ou toi pouvez preciser pour les arguments pour CGLS ci dessous} \RC{Vu que tu n'as pas fait varier ce paramètre, on peut ne pas en parler}
- \item Size of matrix S;
- \item Maximum number of iterations and tolerance threshold for CGLS.
+ \item maximum number of inner iterations $\MIG$ and outer iterations $\MIM$,
+ \item inner precision $\TOLG$ and outer precision $\TOLM$,
+ \item matrix sizes of the 3D Poisson problem: N$_{x}$, N$_{y}$ and N$_{z}$ on axis $x$, $y$ and $z$ respectively,
+ \item matrix diagonal value is fixed to $6.0$ for synchronous Krylov multisplitting experiments and $6.2$ for asynchronous block Jacobi experiments, \RC{CE tu vérifies, je dis ca de tête}
+ \item matrix off-diagonal value is fixed to $-1.0$,
+ \item number of vectors in matrix $S$ (i.e. value of $s$),
+ \item maximum number of iterations $\MIC$ and precision $\TOLC$ for CGLS method,
+ \item maximum number of iterations and precision for the classical GMRES method,
+ \item maximum number of restarts for the Arnorldi process in GMRES method,
+ \item execution mode: synchronous or asynchronous,
\end{itemize}
It should also be noticed that both solvers have been executed with the Simgrid selector \texttt{-cfg=smpi/running\_power} which determines the computational power (here 19GFlops) of the simulator host machine.
In the scope of this paper, our first objective is to analyze when the Krylov
Multisplitting method has better performances than the classical GMRES
-method. With an iterative method, better performances mean a smaller number of
-iterations and execution time before reaching the convergence. For a systematic
-study, the experiments should figure out that, for various grid parameters
-values, the simulator will confirm the targeted outcomes, particularly for poor
-and slow networks, focusing on the impact on the communication performance on
-the chosen class of algorithm.
+method. With a synchronous iterative method, better performances mean a
+smaller number of iterations and execution time before reaching the convergence.
+For a systematic study, the experiments should figure out that, for various
+grid parameters values, the simulator will confirm the targeted outcomes,
+particularly for poor and slow networks, focusing on the impact on the
+communication performance on the chosen class of algorithm.
The following paragraphs present the test conditions, the output results
and our comments.\\
-\subsubsection{Execution of the the algorithms on various computational grid
-architecture and scaling up the input matrix size}
+\subsubsection{Execution of the algorithms on various computational grid
+architectures and scaling up the input matrix size}
\ \\
% environment
In this section, we analyze the performences of algorithms running on various
-grid configuration (2x16, 4x8, 4x16 and 8x8). First, the results in Figure~\ref{fig:01}
-show for all grid configuration the non-variation of the number of iterations of
-classical GMRES for a given input matrix size; it is not the case for the
+grid configurations (2x16, 4x8, 4x16 and 8x8). First, the results in Figure~\ref{fig:01}
+show for all grid configurations the non-variation of the number of iterations of
+classical GMRES for a given input matrix size; it is not the case for the
multisplitting method.
\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
and 4x8). We can observ the low sensitivity of the Krylov multisplitting method
(compared with the classical GMRES) when scaling up the number of the processors
in the grid: in average, the GMRES (resp. Multisplitting) algorithm performs
-40\% better (resp. 48\%) less when running from 2x16=32 to 8x8=64 processors.
+$40\%$ better (resp. $48\%$) when running from 2x16=32 to 8x8=64 processors.
-\subsubsection{Running on two different speed cluster inter-networks}
+\subsubsection{Running on two different inter-clusters network speed}
\ \\
\begin{figure} [ht!]
Grid & 2x16, 4x8\\ %\hline
Network & N1 : bw=10Gbs-lat=8.10$^{-6}$ \\ %\hline
- & N2 : bw=1Gbs-lat=5.10$^{-5}$ \\
- Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline
+ Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline
\end{tabular}
\caption{Clusters x Nodes - Networks N1 x N2}
\end{center}
speed inter-cluster network (N1) and also on a less performant network (N2).
Figure~\ref{fig:02} shows that end users will gain to reduce the execution time
for both algorithms in using a grid architecture like 4x16 or 8x8: the
-performance was increased in a factor of 2. The results depict also that when
+performance was increased by a factor of $2$. The results depict also that when
the network speed drops down (12.5\%), the difference between the execution
times can reach more than 25\%. \RC{c'est pas clair : la différence entre quoi et quoi?}
+\DL{pas clair}
\subsubsection{Network latency impacts on performance}
\ \\
Network & N1 : bw=1Gbs \\ %\hline
Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline
\end{tabular}
-\caption{Network latency impact}
+\caption{Network latency impacts}
\end{figure}
\begin{figure} [ht!]
\centering
\includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
-\caption{Network latency impact on execution time}
+\caption{Network latency impacts on execution time}
\label{fig:03}
\end{figure}
-According the results in Figure~\ref{fig:03}, a degradation of the network
-latency from 8.10$^{-6}$ to 6.10$^{-5}$ implies an absolute time increase more
-than 75\% (resp. 82\%) of the execution for the classical GMRES (resp. Krylov
+According to the results of Figure~\ref{fig:03}, a degradation of the network
+latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time increase of more
+than $75\%$ (resp. $82\%$) of the execution for the classical GMRES (resp. Krylov
multisplitting) algorithm. In addition, it appears that the Krylov
multisplitting method tolerates more the network latency variation with a less
rate increase of the execution time. Consequently, in the worst case
-(lat=6.10$^{-5 }$), the execution time for GMRES is almost the double than the
+($lat=6.10^{-5 }$), the execution time for GMRES is almost the double than the
time of the Krylov multisplitting, even though, the performance was on the same
-order of magnitude with a latency of 8.10$^{-6}$.
+order of magnitude with a latency of $8.10^{-6}$.
\subsubsection{Network bandwidth impacts on performance}
\ \\
Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\
\end{tabular}
-\caption{Network bandwidth impact}
+\caption{Network bandwidth impacts}
\end{figure}
\begin{figure} [ht!]
\centering
\includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
-\caption{Network bandwith impact on execution time}
+\caption{Network bandwith impacts on execution time}
\label{fig:04}
\end{figure}
-
-
The results of increasing the network bandwidth show the improvement of the
performance for both algorithms by reducing the execution time (see
Figure~\ref{fig:04}). However, in this case, the Krylov multisplitting method
presents a better performance in the considered bandwidth interval with a gain
-of 40\% which is only around 24\% for classical GMRES.
+of $40\%$ which is only around $24\%$ for the classical GMRES.
\subsubsection{Input matrix size impacts on performance}
\ \\
\begin{tabular}{r c }
\hline
Grid & 4x8\\ %\hline
- Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\
+ Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\
Input matrix size & N$_{x}$ = From 40 to 200\\ \hline
\end{tabular}
-\caption{Input matrix size impact}
+\caption{Input matrix size impacts}
\end{figure}
\begin{figure} [ht!]
\centering
\includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
-\caption{Problem size impact on execution time}
+\caption{Problem size impacts on execution time}
\label{fig:05}
\end{figure}
-In these experiments, the input matrix size has been set from N$_{x}$ = N$_{y}$
-= N$_{z}$ = 40 to 200 side elements that is from 40$^{3}$ = 64.000 to 200$^{3}$
-= 8,000,000 points. Obviously, as shown in Figure~\ref{fig:05}, the execution
+In these experiments, the input matrix size has been set from $N_{x} = N_{y}
+= N_{z} = 40$ to $200$ side elements that is from $40^{3} = 64.000$ to $200^{3}
+= 8,000,000$ points. Obviously, as shown in Figure~\ref{fig:05}, the execution
time for both algorithms increases when the input matrix size also increases.
But the interesting results are:
\begin{enumerate}
- \item the drastic increase (300 times) \RC{Je ne vois pas cela sur la figure}
+ \item the drastic increase ($300$ times) \RC{Je ne vois pas cela sur la figure}
of the number of iterations needed to reach the convergence for the classical
-GMRES algorithm when the matrix size go beyond N$_{x}$=150;
-\item the classical GMRES execution time is almost the double for N$_{x}$=140
+GMRES algorithm when the matrix size go beyond $N_{x}=150$;
+\item the classical GMRES execution time is almost the double for $N_{x}=140$
compared with the Krylov multisplitting method.
\end{enumerate}
size scale up. It should be noticed that the same test has been done with the
grid 2x16 leading to the same conclusion.
-\subsubsection{CPU Power impact on performance}
+\subsubsection{CPU Power impacts on performance}
\begin{figure} [ht!]
\centering
Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
Input matrix size & N$_{x}$ = 150 x 150 x 150\\ \hline
\end{tabular}
-\caption{CPU Power impact}
+\caption{CPU Power impacts}
\end{figure}
\begin{figure} [ht!]
\centering
\includegraphics[width=100mm]{cpu_power_impact_on_execution_time.pdf}
-\caption{CPU Power impact on execution time}
+\caption{CPU Power impacts on execution time}
\label{fig:06}
\end{figure}
Using the Simgrid simulator flexibility, we have tried to determine the impact
on the algorithms performance in varying the CPU power of the clusters nodes
-from 1 to 19 GFlops. The outputs depicted in Figure~\ref{fig:06} confirm the
-performance gain, around 95\% for both of the two methods, after adding more
+from $1$ to $19$ GFlops. The outputs depicted in Figure~\ref{fig:06} confirm the
+performance gain, around $95\%$ for both of the two methods, after adding more
powerful CPU.
+\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà
+obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas
+besoin de déployer sur une archi réelle}
+
\subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode}
The previous paragraphs put in evidence the interests to simulate the behavior