]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modif 5.4.5
[rce2015.git] / paper.tex
index efbda8abecc21ae9c8ba61374eb87746419f44ef..81265832b8f3ef293ab021a567b2c5379ed20e04 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -24,6 +24,8 @@
 % Extension pour les liens intra-documents (tagged PDF)
 % et l'affichage correct des URL (commande \url{http://example.com})
 %\usepackage{hyperref}
 % Extension pour les liens intra-documents (tagged PDF)
 % et l'affichage correct des URL (commande \url{http://example.com})
 %\usepackage{hyperref}
+\usepackage{multirow}
+
 
 \usepackage{url}
 \DeclareUrlCommand\email{\urlstyle{same}}
 
 \usepackage{url}
 \DeclareUrlCommand\email{\urlstyle{same}}
@@ -319,7 +321,7 @@ A_{\ell\ell} x_\ell = c_\ell,\mbox{~for~}\ell=1,\ldots,L,
 \end{equation}
 where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}.
 
 \end{equation}
 where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}.
 
-\begin{figure}[t]
+\begin{figure}[htpb]
 %\begin{algorithm}[t]
 %\caption{Block Jacobi two-stage multisplitting method}
 \begin{algorithmic}[1]
 %\begin{algorithm}[t]
 %\caption{Block Jacobi two-stage multisplitting method}
 \begin{algorithmic}[1]
@@ -357,7 +359,7 @@ At each $s$ outer iterations, the algorithm computes a new approximation $\tilde
 \end{equation}
 The algorithm in Figure~\ref{alg:02} includes the procedure of the residual minimization and the outer iteration is restarted with a new approximation $\tilde{x}$ at every $s$ iterations. The least-squares problem~(\ref{eq:06}) is solved in parallel by all clusters using CGLS method~\cite{Hestenes52} such that $\MIC$ is the maximum number of iterations and $\TOLC$ is the tolerance threshold for this method (line~\ref{cgls} in Figure~\ref{alg:02}).
 
 \end{equation}
 The algorithm in Figure~\ref{alg:02} includes the procedure of the residual minimization and the outer iteration is restarted with a new approximation $\tilde{x}$ at every $s$ iterations. The least-squares problem~(\ref{eq:06}) is solved in parallel by all clusters using CGLS method~\cite{Hestenes52} such that $\MIC$ is the maximum number of iterations and $\TOLC$ is the tolerance threshold for this method (line~\ref{cgls} in Figure~\ref{alg:02}).
 
-\begin{figure}[t]
+\begin{figure}[htbp]
 %\begin{algorithm}[t]
 %\caption{Krylov two-stage method using block Jacobi multisplitting}
 \begin{algorithmic}[1]
 %\begin{algorithm}[t]
 %\caption{Krylov two-stage method using block Jacobi multisplitting}
 \begin{algorithmic}[1]
@@ -405,10 +407,10 @@ in which  several clusters are  geographically distant,  so there are  intra and
 inter-cluster communications. In the following, these parameters are described:
 
 \begin{itemize}
 inter-cluster communications. In the following, these parameters are described:
 
 \begin{itemize}
-       \item hostfile: hosts description file.
+       \item hostfile: hosts description file,
        \item platform: file describing the platform architecture: clusters (CPU power,
 \dots{}), intra cluster network description, inter cluster network (bandwidth $bw$,
        \item platform: file describing the platform architecture: clusters (CPU power,
 \dots{}), intra cluster network description, inter cluster network (bandwidth $bw$,
-latency $lat$, \dots{}).
+latency $lat$, \dots{}),
        \item archi   : grid computational description (number of clusters, number of
 nodes/processors in each cluster).
 \end{itemize}
        \item archi   : grid computational description (number of clusters, number of
 nodes/processors in each cluster).
 \end{itemize}
@@ -433,10 +435,10 @@ It should also be noticed that both solvers have been executed with the SimGrid
 %%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%
 
 %%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%
 
-\section{Experimental Results}
+\section{Experimental results}
 \label{sec:expe}
 
 \label{sec:expe}
 
-In this section, experiments for both Multisplitting algorithms are reported. First the 3D Poisson problem used in our experiments is described.
+In this section, experiments for both multisplitting algorithms are reported. First the 3D Poisson problem used in our experiments is described.
 
 \subsection{The 3D Poisson problem}
 \label{3dpoisson}
 
 \subsection{The 3D Poisson problem}
 \label{3dpoisson}
@@ -473,9 +475,9 @@ have been chosen for the study in this paper. \\
 
 \textbf{Step 2}: Collect the software materials needed for the experimentation.
 In our case, we have two variants algorithms for the resolution of the
 
 \textbf{Step 2}: Collect the software materials needed for the experimentation.
 In our case, we have two variants algorithms for the resolution of the
-3D-Poisson problem: (1) using the classical GMRES; (2) and the Multisplitting
-method. In addition, the Simgrid simulator has been chosen to simulate the
-behaviors of the distributed applications. Simgrid is running in a virtual
+3D-Poisson problem: (1) using the classical GMRES; (2) and the multisplitting
+method. In addition, the SimGrid simulator has been chosen to simulate the
+behaviors of the distributed applications. SimGrid is running in a virtual
 machine on a simple laptop. \\
 
 \textbf{Step 3}: Fix the criteria which will be used for the future
 machine on a simple laptop. \\
 
 \textbf{Step 3}: Fix the criteria which will be used for the future
@@ -483,14 +485,17 @@ results comparison and analysis. In the scope of this study, we retain
 on the  one hand the algorithm execution mode (synchronous and asynchronous)
 and on the other hand the execution time and the number of iterations to reach the convergence. \\
 
 on the  one hand the algorithm execution mode (synchronous and asynchronous)
 and on the other hand the execution time and the number of iterations to reach the convergence. \\
 
-\textbf{Step 4  }: Set up the  different grid testbed environments  that will be
-simulated in the  simulator tool to run the program.  The following architecture
-has been configured in Simgrid : 2x16, 4x8, 4x16, 8x8 and 2x50. The first number
+\textbf{Step 4}: Set up the  different grid testbed environments  that will be
+simulated in the  simulator tool to run the program.  The following architectures
+have been configured in SimGrid : 2$\times$16, 4$\times$8, 4$\times$16, 8$\times$8 and 2$\times$50. The first number
 represents the number  of clusters in the grid and  the second number represents
 represents the number  of clusters in the grid and  the second number represents
-the number  of hosts (processors/cores)  in each  cluster. The network  has been
+the number  of hosts (processors/cores)  in each  cluster. The network has been
 designed to  operate with a bandwidth  equals to 10Gbits (resp.  1Gbits/s) and a
 latency of 8.10$^{-6}$ seconds (resp.  5.10$^{-5}$) for the intra-clusters links
 designed to  operate with a bandwidth  equals to 10Gbits (resp.  1Gbits/s) and a
 latency of 8.10$^{-6}$ seconds (resp.  5.10$^{-5}$) for the intra-clusters links
-(resp.  inter-clusters backbone links). \\
+(resp.  inter-clusters backbone links).  \\
+
+%\LZK{Il me semble que le bw et lat des deux réseaux varient dans les expés d'une simu à l'autre. On vire la dernière phrase?}
+%\RC{il me semble qu'on peut laisser ca}
 
 \textbf{Step 5}: Conduct an extensive and comprehensive testings
 within these configurations by varying the key parameters, especially
 
 \textbf{Step 5}: Conduct an extensive and comprehensive testings
 within these configurations by varying the key parameters, especially
@@ -499,8 +504,7 @@ input data.  \\
 
 \textbf{Step 6} : Collect and analyze the output results.
 
 
 \textbf{Step 6} : Collect and analyze the output results.
 
-\subsection{Factors impacting distributed applications performance in
-a grid environment}
+\subsection{Factors impacting distributed applications performance in a grid environment}
 
 When running a distributed application in a computational grid, many factors may
 have a strong impact on the performance.  First of all, the architecture of the
 
 When running a distributed application in a computational grid, many factors may
 have a strong impact on the performance.  First of all, the architecture of the
@@ -513,10 +517,10 @@ Another important factor  impacting the overall performance  of the application
 is the network configuration. Two main network parameters can modify drastically
 the program output results:
 \begin{enumerate}
 is the network configuration. Two main network parameters can modify drastically
 the program output results:
 \begin{enumerate}
-\item  the network  bandwidth  (bw=bits/s) also  known  as "the  data-carrying
+\item  the network  bandwidth  ($bw$ in bits/s) also  known  as "the  data-carrying
     capacity" of the network is defined as  the maximum of data that can transit
     from one point to another in a unit of time.
     capacity" of the network is defined as  the maximum of data that can transit
     from one point to another in a unit of time.
-\item the  network latency  (lat :  microsecond) defined as  the delay  from the
+\item the  network latency  ($lat$ in microseconds) defined as  the delay  from the
   start time to send  a simple data from a source to a destination.
 \end{enumerate}
 Upon  the   network  characteristics,  another  impacting   factor  is  the volume of data exchanged  between the nodes in the cluster
   start time to send  a simple data from a source to a destination.
 \end{enumerate}
 Upon  the   network  characteristics,  another  impacting   factor  is  the volume of data exchanged  between the nodes in the cluster
@@ -527,107 +531,122 @@ and  between distant  clusters.  This parameter is application dependent.
  on  the other  hand, the  "inter-network" which  is the  backbone link  between
  clusters.  In   practice,  these  two   networks  have  different   speeds.
  The intra-network  generally works  like a  high speed  local network  with a
  on  the other  hand, the  "inter-network" which  is the  backbone link  between
  clusters.  In   practice,  these  two   networks  have  different   speeds.
  The intra-network  generally works  like a  high speed  local network  with a
- high bandwith and very low latency. In opposite, the inter-network connects
- clusters sometime via  heterogeneous networks components  throuth internet with
+ high bandwidth and very low latency. In opposite, the inter-network connects
+ clusters sometime via  heterogeneous networks components  through internet with
  a lower speed.  The network  between distant  clusters might  be a  bottleneck
  for  the global performance of the application.
 
  a lower speed.  The network  between distant  clusters might  be a  bottleneck
  for  the global performance of the application.
 
-\subsection{Comparison of GMRES and Krylov Multisplitting algorithms in synchronous mode}
+\subsection{Comparison of GMRES and Krylov two-stage algorithms in synchronous mode}
 
 In the scope  of this paper, our  first objective is to analyze  when the Krylov
 
 In the scope  of this paper, our  first objective is to analyze  when the Krylov
-Multisplitting  method   has  better  performance  than   the  classical  GMRES
-method. With a synchronous  iterative method, better performance means a
+two-stage method has  better  performance  than   the  classical  GMRES method. With a synchronous  iterative method, better performance means a
 smaller number of iterations and execution time before reaching the convergence.
 smaller number of iterations and execution time before reaching the convergence.
-For a systematic study,  the experiments  should figure  out  that, for  various
-grid  parameters values, the simulator will confirm  the targeted outcomes,
-particularly for poor and slow  networks, focusing on the  impact on the
-communication  performance on the chosen class of algorithm.
+In what follows, we will present the test conditions, the output results and our comments.
 
 
-The following paragraphs present the test conditions, the output results
-and our comments.\\
+%%RAPH : on vire ca, c'est pas clair et pas important
+%For a systematic study,  the experiments  should figure  out  that, for  various
+%grid  parameters values, the simulator will confirm Multisplitting method  better performance compared to classical GMRES, particularly on poor and slow networks.
+%\LZK{Pas du tout claire la dernière phrase (For a systematic...)!!}
+%\RCE { Reformule autrement}
 
 
 
 
-\subsubsection{Execution of the algorithms on various computational grid
-architectures and scaling up the input matrix size}
+
+%\subsubsection{Execution of the algorithms on various computational grid architectures and scaling up the input matrix size}
+\subsubsection{Simulations for various grid architectures and scaling-up matrix sizes}
 \ \\
 % environment
 
 \ \\
 % environment
 
+\RC{Je ne comprends plus rien CE : pourquoi dans 5.4.1 il y a 2 network et aussi dans 5.4.2. Quelle est la différence? Dans la figure 3 de la section 5.4.1 pourquoi il n'y a pas N1 et N2?}
+
 \begin{table} [ht!]
 \begin{center}
 \begin{table} [ht!]
 \begin{center}
-\begin{tabular}{r c }
+\begin{tabular}{ll }
  \hline
  \hline
- Grid Architecture & 2x16, 4x8, 4x16 and 8x8\\ %\hline
- Network & N2 : bw=1Gbits/s - lat=5.10$^{-5}$ \\ %\hline
- Input matrix size & N$_{x}$ $\times$ N$_{y}$ $\times$ N$_{z}$ =150 $\times$ 150 $\times$ 150\\ %\hline
- - &  N$_{x}$ $\times$ N$_{y}$ $\times$ N$_{z}$  =170 $\times$ 170 $\times$ 170    \\ \hline
+ Grid architecture & 2$\times$16, 4$\times$8, 4$\times$16 and 8$\times$8\\ %\hline
+ \multirow{2}{*}{Network} & Inter (N2): $bw$=1Gbs, $lat$=5$\times$10$^{-5}$ \\ %\hline
+                          & Intra (N1): $bw$=10Gbs, $lat$=8$\times$10$^{-6}$ \\
+ \multirow{2}{*}{Matrix size}  & N$_{x}$ $\times$ N$_{y}$ $\times$ N$_{z}$ =150 $\times$ 150 $\times$ 150\\ %\hline
+  &  N$_{x}$ $\times$ N$_{y}$ $\times$ N$_{z}$  =170 $\times$ 170 $\times$ 170    \\ \hline
  \end{tabular}
  \end{tabular}
-\caption{Test conditions: various grid configurations with the input matix size N$_{x}$=150 or N$_{x}$=170 \RC{N2 n'est pas défini..}\RC{Nx est défini, Ny? Nz?}
-\AG{La lettre 'x' n'est pas le symbole de la multiplication. Utiliser \texttt{\textbackslash times}.  Idem dans le texte, les figures, etc.}}
+\caption{Test conditions: various grid configurations with the matrix sizes 150$^3$ or 170$^3$}
+%\LZK{Ce sont les caractéristiques du réseau intra ou inter clusters? Ce n'est pas précisé...}
+%\RCE{oui c est precise}
 \label{tab:01}
 \end{center}
 \end{table}
 
 
 \label{tab:01}
 \end{center}
 \end{table}
 
 
-
-
-
-In this  section, we analyze the  performance of algorithms running  on various
-grid configurations  (2x16, 4x8, 4x16  and 8x8). First,  the results in  Figure~\ref{fig:01}
-show for all grid configurations the non-variation of the number of iterations of
-classical  GMRES for  a given  input matrix  size; it is not  the case  for the
-multisplitting method.
-
-\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
-\RC{Les légendes ne sont pas explicites...}
-
-
-\begin{figure} [ht!]
+In  this  section,  we  analyze   the  simulations  conducted  on  various  grid
+configurations presented  in Table~\ref{tab:01}. It  should be noticed  that two
+networks are considered: N1 is  the network between clusters (inter-cluster) and
+N2 is the network inside  a cluster (intra-cluster).  Figure~\ref{fig:01} shows,
+for all  grid configurations  and a  given matrix size,  a non-variation  in the
+number of iterations for the classical GMRES algorithm, which is not the case of
+the Krylov two-stage algorithm.
+%% First,  the results in  Figure~\ref{fig:01}
+%% show for all grid configurations the non-variation of the number of iterations of
+%% classical  GMRES for  a given  input matrix  size; it is not  the case  for the
+%% multisplitting method.
+%\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
+%\RC{Les légendes ne sont pas explicites...}
+%\RCE{Corrige}
+
+\begin{figure} [htbp]
   \begin{center}
     \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
   \end{center}
   \begin{center}
     \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
   \end{center}
-  \caption{Various grid configurations with the input matrix size $N_{x}=150$ and $N_{x}=170$\RC{idem}
-\AG{Utiliser le point comme séparateur décimal et non la virgule.  Idem dans les autres figures.}}
+  \caption{Various grid configurations with the matrix sizes 150$^3$ and 170$^3$}
+%\AG{Utiliser le point comme séparateur décimal et non la virgule.  Idem dans les autres figures.}
+%\LZK{Pour quelle taille du problème sont calculés les nombres d'itérations? Que représente le 2 Clusters x 16 Nodes with Nx=150 and Nx=170 en haut de la figure?}
+  %\RCE {Corrige}
+    \RC{Idéalement dans la légende il faudrait insiquer Pb size=$150^3$ ou $170^3$  car pour l'instant Nx=150 ca n'indique rien concernant Ny et Nz}
   \label{fig:01}
 \end{figure}
 
 
   \label{fig:01}
 \end{figure}
 
 
+
 The execution  times between  the two algorithms  is significant  with different
 The execution  times between  the two algorithms  is significant  with different
-grid architectures, even  with the same number of processors  (for example, 2x16
-and  4x8). We  can  observ  the low  sensitivity  of  the Krylov multisplitting  method
+grid architectures, even  with the same number of processors  (for example, 2 $\times$ 16
+and  4 $\times  8$). We  can  observe  a better  sensitivity  of  the Krylov multisplitting  method
 (compared with the classical GMRES) when scaling up the number of the processors
 in the  grid: in  average, the GMRES  (resp. Multisplitting)  algorithm performs
 (compared with the classical GMRES) when scaling up the number of the processors
 in the  grid: in  average, the GMRES  (resp. Multisplitting)  algorithm performs
-$40\%$ better (resp. $48\%$) when running from 2x16=32 to 8x8=64 processors. \RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?}
+$40\%$ better (resp. $48\%$) when running from 32 (grid 2 $\times$ 16) to 64 processors/cores (grid 8 $\times$ 8). Note that even with a grid 8 $\times$ 8 having the maximum number of clusters, the execution time of the multisplitting method is in average 32\% less compared to GMRES. 
+\RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?}
+\LZK{A revoir toute cette analyse... Le multi est plus performant que GMRES. Les temps d'exécution de multi sont sensibles au nombre de CLUSTERS. Il est moins performant pour un nombre grand de cluster. Avez vous d'autres remarques?}
+\RCE{Remarquez que meme avec une grille 8x8, le multi est toujours plus performant}
 
 
-\subsubsection{Running on two different inter-clusters network speeds \\}
+\subsubsection{Simulations for two different inter-clusters network speeds \\}
 
 \begin{table} [ht!]
 \begin{center}
 
 \begin{table} [ht!]
 \begin{center}
-\begin{tabular}{r c }
+\begin{tabular}{ll}
  \hline
  \hline
- Grid Architecture & 2x16, 4x8\\ %\hline
Network & N1 : bw=10Gbs-lat=8.10$^{-6}$ \\ %\hline
- & N2 : bw=1Gbs-lat=5.10$^{-5}$ \\
Input matrix size & $N_{x} \times N_{y} \times N_{z} =150 \times 150 \times 150$\\ \hline
+ Grid architecture        & 2$\times$16, 4$\times$8\\ %\hline
\multirow{2}{*}{Inter Network} & N1: $bw$=1Gbs, $lat$=5$\times$10$^{-5}$ \\ %\hline
                         & N2: $bw$=10Gbs, $lat$=8$\times$10$^{-6}$ \\
Matrix size              & $N_{x} \times N_{y} \times N_{z} =150 \times 150 \times 150$\\ \hline
  \end{tabular}
  \end{tabular}
-\caption{Test conditions: grid 2x16 and 4x8 with  networks N1 vs N2}
+\caption{Test conditions: grid configurations 2$\times$16 and 4$\times$8 with networks N1 vs. N2}
 \label{tab:02}
 \end{center}
 \end{table}
 
 \label{tab:02}
 \end{center}
 \end{table}
 
-These experiments  compare the  behavior of  the algorithms  running first  on a
-speed inter-cluster  network (N1) and  also on  a less performant  network (N2). \RC{Il faut définir cela avant...}
+In this section, the experiments  compare the  behavior of  the algorithms  running on a
+speeder inter-cluster  network (N2) and  also on  a less performant  network (N1) respectively defined in the test conditions Table~\ref{tab:02}.
+%\RC{Il faut définir cela avant...}
 Figure~\ref{fig:02} shows that end users will reduce the execution time
 Figure~\ref{fig:02} shows that end users will reduce the execution time
-for  both  algorithms when using  a  grid  architecture  like  4x16 or  8x8: the reduction is about $2$. The results depict  also that when
+for  both  algorithms when using  a  grid  architecture  like  4 $\times$ 16 or  8 $\times$ 8: the reduction factor is around $2$. The results depict  also that when
 the  network speed  drops down (variation of 12.5\%), the  difference between  the two Multisplitting algorithms execution times can reach more than 25\%.
 
 
 
 %\begin{wrapfigure}{l}{100mm}
 the  network speed  drops down (variation of 12.5\%), the  difference between  the two Multisplitting algorithms execution times can reach more than 25\%.
 
 
 
 %\begin{wrapfigure}{l}{100mm}
-\begin{figure} [ht!]
+\begin{figure} [htbp]
 \centering
 \includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
 \centering
 \includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
-\caption{Grid 2x16 and 4x8 with networks N1 vs N2
-\AG{\np{8E-6}, \np{5E-6} au lieu de 8E-6, 5E-6}}
+\caption{Various grid configurations with networks N1 vs N2}
+%\AG{\np{8E-6}, \np{5E-6} au lieu de 8E-6, 5E-6}}
+%\RCE{Corrige}
 \label{fig:02}
 \end{figure}
 %\end{wrapfigure}
 \label{fig:02}
 \end{figure}
 %\end{wrapfigure}
@@ -639,35 +658,31 @@ the  network speed  drops down (variation of 12.5\%), the  difference between  t
 \centering
 \begin{tabular}{r c }
  \hline
 \centering
 \begin{tabular}{r c }
  \hline
- Grid Architecture & 2x16\\ %\hline
- Network & N1 : bw=1Gbs \\ %\hline
+ Grid Architecture & 2 $\times$ 16\\ %\hline
+ \multirow{2}{*}{Inter Network N1} & $bw$=1Gbs, \\ %\hline
+                          & $lat$= From 8$\times$10$^{-6}$ to  $6.10^{-5}$ second \\
  Input matrix size & $N_{x} \times N_{y} \times N_{z} = 150 \times 150 \times 150$\\ \hline
  \end{tabular}
 \caption{Test conditions: network latency impacts}
 \label{tab:03}
 \end{table}
 
  Input matrix size & $N_{x} \times N_{y} \times N_{z} = 150 \times 150 \times 150$\\ \hline
  \end{tabular}
 \caption{Test conditions: network latency impacts}
 \label{tab:03}
 \end{table}
 
-
-
-\begin{figure} [ht!]
+\begin{figure} [htbp]
 \centering
 \includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
 \centering
 \includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
-\caption{Network latency impacts on execution time
-\AG{\np{E-6}}}
+\caption{Network latency impacts on execution time}
+%\AG{\np{E-6}}}
 \label{fig:03}
 \end{figure}
 
 \label{fig:03}
 \end{figure}
 
+In Table~\ref{tab:03}, parameters  for the influence of the  network latency are
+reported.  According to the results of Figure~\ref{fig:03}, a degradation of the
+network  latency  from  $8.10^{-6}$  to $6.10^{-5}$  implies  an  absolute  time
+increase of more than $75\%$ (resp.   $82\%$) of the execution for the classical
+GMRES  (resp.   Krylov  multisplitting)  algorithm. The  execution  time  factor
+between the two algorithms  varies from 2.2 to 1.5 times  with a network latency
+decreasing from $8.10^{-6}$ to $6.10^{-5}$.
 
 
-According to  the results of  Figure~\ref{fig:03}, a degradation of  the network
-latency from  $8.10^{-6}$ to  $6.10^{-5}$ implies an  absolute time  increase of
-more  than $75\%$  (resp.  $82\%$)  of the  execution  for  the classical  GMRES
-(resp.  Krylov multisplitting)  algorithm.   In addition,  it  appears that  the
-Krylov multisplitting method tolerates more the network latency variation with a
-less  rate increase  of  the  execution time.\RC{Les  2  précédentes phrases  me
-  semblent en contradiction....}  Consequently, in the worst case ($lat=6.10^{-5
-}$), the  execution time for  GMRES is  almost the double  than the time  of the
-Krylov multisplitting,  even though, the  performance was  on the same  order of
-magnitude with a latency of $8.10^{-6}$.
 
 \subsubsection{Network bandwidth impacts on performance}
 \ \\
 
 \subsubsection{Network bandwidth impacts on performance}
 \ \\
@@ -675,20 +690,24 @@ magnitude with a latency of $8.10^{-6}$.
 \centering
 \begin{tabular}{r c }
  \hline
 \centering
 \begin{tabular}{r c }
  \hline
- Grid Architecture & 2x16\\ %\hline
- Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
+ Grid Architecture & 2 $\times$ 16\\ %\hline
+\multirow{2}{*}{Inter Network N1} & $bw$=From 1Gbs to 10 Gbs \\ %\hline
+                          & $lat$= 5.10$^{-5}$ second \\
  Input matrix size & $N_{x} \times N_{y} \times N_{z} =150 \times 150 \times 150$\\ \hline \\
  \end{tabular}
  Input matrix size & $N_{x} \times N_{y} \times N_{z} =150 \times 150 \times 150$\\ \hline \\
  \end{tabular}
-\caption{Test conditions: Network bandwidth impacts\RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}}
+\caption{Test conditions: Network bandwidth impacts}
+%  \RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}
+%\RCE{C est le bw}
 \label{tab:04}
 \end{table}
 
 
 \label{tab:04}
 \end{table}
 
 
-\begin{figure} [ht!]
+\begin{figure} [htbp]
 \centering
 \includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
 \centering
 \includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
-\caption{Network bandwith impacts on execution time
-\AG{``Execution time'' avec un 't' minuscule}. Idem autres figures.}
+\caption{Network bandwith impacts on execution time}
+%\AG{``Execution time'' avec un 't' minuscule}. Idem autres figures.}
+%\RCE{Corrige}
 \label{fig:04}
 \end{figure}
 
 \label{fig:04}
 \end{figure}
 
@@ -704,49 +723,47 @@ of $40\%$ which is only around $24\%$ for the classical GMRES.
 \centering
 \begin{tabular}{r c }
  \hline
 \centering
 \begin{tabular}{r c }
  \hline
- Grid Architecture & 4x8\\ %\hline
Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\
- Input matrix size & $N_{x}$ = From 40 to 200\\ \hline
+ Grid Architecture & 4 $\times$ 8\\ %\hline
Inter Network & $bw$=1Gbs - $lat$=5.10$^{-5}$ \\
+ Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 50$^{3}$ to 190$^{3}$\\ \hline
  \end{tabular}
 \caption{Test conditions: Input matrix size impacts}
 \label{tab:05}
 \end{table}
 
 
  \end{tabular}
 \caption{Test conditions: Input matrix size impacts}
 \label{tab:05}
 \end{table}
 
 
-\begin{figure} [ht!]
+\begin{figure} [htbp]
 \centering
 \includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
 \caption{Problem size impacts on execution time}
 \label{fig:05}
 \end{figure}
 
 \centering
 \includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
 \caption{Problem size impacts on execution time}
 \label{fig:05}
 \end{figure}
 
-In these experiments, the input matrix size  has been set from $N_{x} = N_{y}
-= N_{z} = 40$ to $200$ side elements  that is from $40^{3} = 64.000$ to $200^{3}
-= 8,000,000$  points. Obviously, as  shown in Figure~\ref{fig:05},  the execution
-time for  both algorithms increases when  the input matrix size  also increases.
-But the interesting results are:
-\begin{enumerate}
-  \item the drastic increase ($10$ times)  of the number of iterations needed to
-    reach the convergence for the classical GMRES algorithm when the matrix size
-    go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire}
-\item the  classical GMRES execution time  is almost the double  for $N_{x}=140$
-  compared with the Krylov multisplitting method.
-\end{enumerate}
+In  these  experiments, the  input  matrix  size has  been  set  from $50^3$  to
+$190^3$. Obviously, as shown in Figure~\ref{fig:05}, the execution time for both
+algorithms increases when the input matrix size also increases.  For all problem
+sizes, GMRES is always slower than the Krylov multisplitting. Moreover, for this
+benchmark, it seems that  the greater the problem size is,  the bigger the ratio
+between both  algorithm execution  times is.  We can also  observ that  for some
+problem   sizes,  the   Krylov   multisplitting  convergence   varies  quite   a
+lot. Consequently the execution times in that cases also varies.
+
 
 These  findings may  help a  lot end  users to  setup the  best and  the optimal
 targeted environment for the application deployment when focusing on the problem
 size scale up.  It  should be noticed that the same test has  been done with the
 
 These  findings may  help a  lot end  users to  setup the  best and  the optimal
 targeted environment for the application deployment when focusing on the problem
 size scale up.  It  should be noticed that the same test has  been done with the
-grid 2x16 leading to the same conclusion.
+grid 2 $\times$ 16 leading to the same conclusion.
 
 \subsubsection{CPU Power impacts on performance}
 
 
 \subsubsection{CPU Power impacts on performance}
 
-\begin{table} [ht!]
+\begin{table} [htbp]
 \centering
 \begin{tabular}{r c }
  \hline
 \centering
 \begin{tabular}{r c }
  \hline
- Grid architecture & 2x16\\ %\hline
- Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
- Input matrix size & $N_{x} = 150 \times 150 \times 150$\\ \hline
+ Grid architecture & 2 $\times$ 16\\ %\hline
+ Inter Network & N2 : $bw$=1Gbs - $lat$=5.10$^{-5}$ \\ %\hline
+ Input matrix size & $N_{x} = 150 \times 150 \times 150$\\ 
+ CPU Power & From 3 to 19 GFlops \\ \hline
  \end{tabular}
 \caption{Test conditions: CPU Power impacts}
 \label{tab:06}
  \end{tabular}
 \caption{Test conditions: CPU Power impacts}
 \label{tab:06}
@@ -791,21 +808,23 @@ synchronization  with   the  other   processors.  Thus,  the   asynchronous  may
 theoretically reduce  the overall execution  time and can improve  the algorithm
 performance.
 
 theoretically reduce  the overall execution  time and can improve  the algorithm
 performance.
 
-\RC{la phrase suivante est bizarre, je ne comprends pas pourquoi elle vient ici}
-In this section, Simgrid simulator tool has been successfully used to show
-the efficiency of  the multisplitting in asynchronous mode and  to find the best
-combination of the grid resources (CPU,  Network, input matrix size, \ldots ) to
-get    the   highest    \textit{"relative    gain"}   (exec\_time$_{GMRES}$    /
-exec\_time$_{multisplitting}$) in comparison with the classical GMRES time.
+In this section,  the Simgrid simulator is  used to compare the  behavior of the
+multisplitting in  asynchronous mode  with GMRES  in synchronous  mode.  Several
+benchmarks have  been performed with  various combination of the  grid resources
+(CPU, Network, input  matrix size, \ldots ). The test  conditions are summarized
+in  Table~\ref{tab:07}. In  order to  compare  the execution  times, this  table
+reports the  relative gain between both  algorithms. It is defined  by the ratio
+between  the   execution  time  of   GMRES  and   the  execution  time   of  the
+multisplitting.  The  ration  is  greater  than  one  because  the  asynchronous
+multisplitting version is faster than GMRES.
 
 
 
 
-The test conditions are summarized in the table~\ref{tab:07}: \\
 
 
-\begin{table} [ht!]
+\begin{table} [htbp]
 \centering
 \begin{tabular}{r c }
  \hline
 \centering
 \begin{tabular}{r c }
  \hline
- Grid Architecture & 2x50 totaling 100 processors\\ %\hline
+ Grid Architecture & 2 $\times$ 50 totaling 100 processors\\ %\hline
  Processors Power & 1 GFlops to 1.5 GFlops\\
    Intra-Network & bw=1.25 Gbits - lat=5.10$^{-5}$ \\ %\hline
    Inter-Network & bw=5 Mbits - lat=2.10$^{-2}$\\
  Processors Power & 1 GFlops to 1.5 GFlops\\
    Intra-Network & bw=1.25 Gbits - lat=5.10$^{-5}$ \\ %\hline
    Inter-Network & bw=5 Mbits - lat=2.10$^{-2}$\\
@@ -851,7 +870,7 @@ geographically distant clusters through the internet.
     power (GFlops)
     & 1    & 1    & 1    & 1.5       & 1.5  & 1.5         & 1.5         & 1         & 1.5       & 1.5 \\
     \hline
     power (GFlops)
     & 1    & 1    & 1    & 1.5       & 1.5  & 1.5         & 1.5         & 1         & 1.5       & 1.5 \\
     \hline
-    size (N)
+    size ($N^3$)
     & 62  & 62   & 62        & 100       & 100 & 110       & 120       & 130       & 140       & 150 \\
     \hline
     Precision
     & 62  & 62   & 62        & 100       & 100 & 110       & 120       & 130       & 140       & 150 \\
     \hline
     Precision