]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Petites corrections: partie poisson problem
[rce2015.git] / paper.tex
index 397decc12af88aba0e11d0f4c954cde9f731e27d..a1c18890e2f7d30143a2fd06068c3cb6a43eddd3 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -377,16 +377,13 @@ such that
 where the real-valued function $\phi(x,y,z)$ is the solution sought, $f(x,y,z)$ is a known function and $\Omega=[0,1]^3$. The 3D discretization of the Laplace operator $\nabla^2$ with the finite difference scheme includes 7 points stencil on the computational grid. The numerical approximation of the Poisson problem on three-dimensional grid is repeatedly computed as $\phi=\phi^\star$ such that      
 \begin{equation}
 \begin{array}{ll}
 where the real-valued function $\phi(x,y,z)$ is the solution sought, $f(x,y,z)$ is a known function and $\Omega=[0,1]^3$. The 3D discretization of the Laplace operator $\nabla^2$ with the finite difference scheme includes 7 points stencil on the computational grid. The numerical approximation of the Poisson problem on three-dimensional grid is repeatedly computed as $\phi=\phi^\star$ such that      
 \begin{equation}
 \begin{array}{ll}
-\phi^\star(x,y,z)= & \frac{1}{6}(\phi(x-h,y,z)+\phi(x+h,y,z) \\
-                  & +\phi(x,y-h,z)+\phi(x,y+h,z) \\
-                  & +\phi(x,y,z-h)+\phi(x,y,z+h)\\
-                  & -h^2f(x,y,z))
+\phi^\star(x,y,z)=&\frac{1}{6}(\phi(x-h,y,z)+\phi(x,y-h,z)+\phi(x,y,z-h)\\&+\phi(x+h,y,z)+\phi(x,y+h,z)+\phi(x,y,z+h)\\&-h^2f(x,y,z))
 \end{array}
 \label{eq:08}
 \end{equation}
 until convergence where $h$ is the grid spacing between two adjacent elements in the 3D computational grid. 
 
 \end{array}
 \label{eq:08}
 \end{equation}
 until convergence where $h$ is the grid spacing between two adjacent elements in the 3D computational grid. 
 
-In the parallel context, the 3D Poisson problem is partitioned into $L\times p$ sub-problems such that $L$ is the number of clusters and $p$ is the number of processors in each cluster. We apply the three-dimensional partitioning instead of the row-by-row one in order to reduce the size of the data shared at the sub-problems boundaries. In this case, each processor is in charge of parallelepipedic sub-problem and has at most six neighbors in the same cluster or in distant clusters with which it shares data at boundaries. 
+In the parallel context, the 3D Poisson problem is partitioned into $L\times p$ sub-problems such that $L$ is the number of clusters and $p$ is the number of processors in each cluster. We apply the three-dimensional partitioning instead of the row-by-row one in order to reduce the size of the data shared at the sub-problems boundaries. In this case, each processor is in charge of parallelepipedic block of the problem and has at most six neighbors in the same cluster or in distant clusters with which it shares data at boundaries. 
 
 \subsection{Study setup and Simulation Methodology}
 
 
 \subsection{Study setup and Simulation Methodology}