Email:~\email{l.zianekhodja@ulg.ac.be}
}
-\begin{abstract} The behavior of multi-core applications is always a challenge
+\begin{abstract} The behavior of multi-core applications is always a challenge
to predict, especially with a new architecture for which no experiment has been
performed. With some applications, it is difficult, if not impossible, to build
accurate performance models. That is why another solution is to use a simulation
bandwidth, latency, number of processors) and to simulate the execution of such
applications. The main contribution of this paper is to show that the use of a
simulation tool (here we have decided to use the SimGrid toolkit) can really
-help developpers to better tune their applications for a given multi-core
+help developers to better tune their applications for a given multi-core
architecture.
-In particular we focus our attention on two parallel iterative algorithms based
-on the Multisplitting algorithm and we compare them to the GMRES algorithm.
-These algorithms are used to solve linear systems. Two different variants of
-the Multisplitting are studied: one using synchronoous iterations and another
-one with asynchronous iterations. For each algorithm we have simulated
+%In particular we focus our attention on two parallel iterative algorithms based
+%on the Multisplitting algorithm and we compare them to the GMRES algorithm.
+%These algorithms are used to solve linear systems. Two different variants of
+%the Multisplitting are studied: one using synchronoous iterations and another
+%one with asynchronous iterations.
+In this paper we focus our attention on the simulation of iterative algorithms to solve sparse linear systems on large clusters. We study the behavior of the widely used GMRES algorithm and two different variants of the Multisplitting algorithms: one using synchronous iterations and another one with asynchronous iterations.
+For each algorithm we have simulated
different architecture parameters to evaluate their influence on the overall
-execution time. The obtain simulated results confirm the real results
-previously obtained on different real multi-core architectures and also confirm
-the efficiency of the asynchronous multisplitting algorithm compared to the
-synchronous GMRES method.
+execution time.
+%The obtain simulated results confirm the real results
+%previously obtained on different real multi-core architectures and also confirm
+%the efficiency of the asynchronous Multisplitting algorithm compared to the
+%synchronous GMRES method.
+The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the synchronous GMRES algorithm.
\end{abstract}
Moreover the obtained results on different simulated multi-core architectures
confirm the real results previously obtained on non simulated architectures.
More precisely the simulated results are in accordance (i.e. with the same order
-of magnitude) with the works presented in [], which show that the multisplitting
-method is more efficient than GMRES for large scale clusters.
+of magnitude) with the works presented in~\cite{couturier15}, which show that the synchronous
+multisplitting method is more efficient than GMRES for large scale clusters.
-\LZK{Il n y a pas dans la partie expé cette comparaison et confirmation des résultats entre la simulation et l'exécution réelle des algos sur les vrais clusters.\\ Sinon on pourrait ajouter dans la partie expé une référence vers le journal supercomput de krylov multi pour confirmer que cette méthode est meilleure que GMRES sur les clusters large échelle.}
-\DL{OK ajout d'une phrase. Par contre je n'ai pas la ref. Merci de la mettre}
+\LZK{Il n y a pas dans la partie expé cette comparaison et confirmation des
+résultats entre la simulation et l'exécution réelle des algos sur les vrais
+clusters.\\ Sinon on pourrait ajouter dans la partie expé une référence vers le
+journal supercomput de krylov multi pour confirmer que cette méthode est
+meilleure que GMRES sur les clusters large échelle.} \DL{OK ajout d'une phrase.
+Par contre je n'ai pas la ref. Merci de la mettre}
-We also confirm the efficiency of the
-asynchronous multisplitting algorithm compared to the synchronous GMRES.
+Simulated results also confirm the efficiency of the asynchronous
+multisplitting algorithm compared to the synchronous GMRES especially in case of
+geographically distant clusters.
\LZK{P.S.: Pour tout le papier, le principal objectif n'est pas de faire des comparaisons entre des méthodes itératives!!\\Sinon, les deux algorithmes Krylov multisplitting synchrone et multisplitting asynchrone sont plus efficaces que GMRES sur des clusters à large échelle.\\Et préciser, si c'est vraiment le cas, que le multisplitting asynchrone est plus efficace et adapté aux clusters distants par rapport aux deux autres algos (je n'ai pas encore lu la partie expé)}
+\DL{Tu as raison on s'est posé la question de garder ou non cette partie des résultats. On a décidé de la garder pour avoir plus de chose à montrer. J'ai essayer de clarifier un peu}
In
this way and with a simple computing architecture (a laptop) SimGrid allows us
\bibliographystyle{wileyj}
\bibliography{biblio}
-\AG{Warning bibtex à corriger (%
- \texttt{empty booktitle in Bru95}%
-).}
+
\end{document}