-\begin{figure} [ht!]
- \begin{center}
- \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
- \end{center}
- \caption{Various grid configurations with the matrix sizes 150$^3$ and 170$^3$}
-%\AG{Utiliser le point comme séparateur décimal et non la virgule. Idem dans les autres figures.}
-%\LZK{Pour quelle taille du problème sont calculés les nombres d'itérations? Que représente le 2 Clusters x 16 Nodes with Nx=150 and Nx=170 en haut de la figure?}
- %\RCE {Corrige}
- \RC{Idéalement dans la légende il faudrait insiquer Pb size=$150^3$ ou $170^3$ car pour l'instant Nx=150 ca n'indique rien concernant Ny et Nz}
- \label{fig:01}
+\begin{figure}[t]
+\begin{center}
+\includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
+\end{center}
+\caption{Various grid configurations with the matrix sizes 150$^3$ and 170$^3$}
+\LZK{CE, la légende de la Figure 3 est trop large. Remplacer les N$_x\times$N$_y\times$N$_z$ par $Mat1$=150$^3$ et $Mat2$=170$^3$ comme dans la Table 1}
+\label{fig:01}
+\end{figure}
+
+\subsubsection{Simulations for two different inter-clusters network speeds\\}
+In Figure~\ref{fig:02} we present the execution times of both algorithms to
+solve a 3D Poisson problem of size $150^3$ on two different simulated network
+$N1$ and $N2$ (see Table~\ref{tab:01}). As previously mentioned, we can see from
+this figure that the Krylov two-stage algorithm is sensitive to the number of
+clusters (i.e. it is better to have a small number of clusters). However, we can
+notice an interesting behavior of the Krylov two-stage algorithm. It is less
+sensitive to bad network bandwidth and latency for the inter-clusters links than
+the GMRES algorithms. This means that the multisplitting methods are more
+efficient for distributed systems with high latency networks.
+
+%% In this section, the experiments compare the behavior of the algorithms running on a
+%% speeder inter-cluster network (N2) and also on a less performant network (N1) respectively defined in the test conditions Table~\ref{tab:02}.
+%% %\RC{Il faut définir cela avant...}
+%% Figure~\ref{fig:02} shows that end users will reduce the execution time
+%% for both algorithms when using a grid architecture like 4 $\times$ 16 or 8 $\times$ 8: the reduction factor is around $2$. The results depict also that when
+%% the network speed drops down (variation of 12.5\%), the difference between the two Multisplitting algorithms execution times can reach more than 25\%.
+
+\begin{figure}[t]
+\centering
+\includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
+\caption{Various grid configurations with networks $N1$ vs. $N2$}
+\LZK{CE, remplacer les ``,'' des décimales par un ``.''}
+\label{fig:02}