]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Modifs summary
[rce2015.git] / paper.tex
index 5122a8498e4dc14ad126a20249bc6c7e043bece3..cda1fddd3c8a6b286add54b1a3ab9afc663cf23b 100644 (file)
--- a/paper.tex
+++ b/paper.tex
   Email:~\email{l.zianekhodja@ulg.ac.be}
 }
 
   Email:~\email{l.zianekhodja@ulg.ac.be}
 }
 
-\begin{abstract} The behavior of multi-core applications is always a challenge
-to predict, especially with a new architecture for which no experiment has been
-performed. With some applications, it is difficult, if not impossible, to build
-accurate performance models. That is why another solution is to use a simulation
-tool which allows us to change many parameters of the architecture (network
-bandwidth, latency, number of processors) and to simulate the execution of such
-applications. The main contribution of this paper is to show that the use of a
-simulation tool (here we have decided to use the SimGrid toolkit) can really
-help developers to better tune their applications for a given multi-core
-architecture.
-
-%In particular we focus our attention on two parallel iterative algorithms based
-%on the  Multisplitting algorithm  and we  compare them  to the  GMRES algorithm.
-%These algorithms  are used to  solve linear  systems. Two different  variants of
-%the Multisplitting are studied: one  using synchronoous  iterations and  another
-%one  with asynchronous iterations.
-In this paper we focus our attention on the simulation of iterative algorithms to solve sparse linear systems on large clusters. We study the behavior of the widely used GMRES algorithm and two different variants of the Multisplitting algorithms: one using synchronous iterations and another one with asynchronous iterations.  
-For each algorithm we have simulated
-different architecture parameters to evaluate their influence on the overall
-execution time. 
-%The obtain simulated results confirm the real results
-%previously obtained on different real multi-core architectures and also confirm
-%the efficiency of the asynchronous Multisplitting algorithm compared to the
-%synchronous GMRES method.
-The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the synchronous GMRES algorithm.
-
+\begin{abstract} %% The behavior of multi-core applications is always a challenge
+%% to predict, especially with a new architecture for which no experiment has been
+%% performed. With some applications, it is difficult, if not impossible, to build
+%% accurate performance models. That is why another solution is to use a simulation
+%% tool which allows us to change many parameters of the architecture (network
+%% bandwidth, latency, number of processors) and to simulate the execution of such
+%% applications. The main contribution of this paper is to show that the use of a
+%% simulation tool (here we have decided to use the SimGrid toolkit) can really
+%% help developers to better tune their applications for a given multi-core
+%% architecture.
+
+%% In this paper we focus our attention on the simulation of iterative algorithms to solve sparse linear systems on large clusters. We study the behavior of the widely used GMRES algorithm and two different variants of the Multisplitting algorithms: one using synchronous iterations and another one with asynchronous iterations.  
+%% For each algorithm we have simulated
+%% different architecture parameters to evaluate their influence on the overall
+%% execution time. 
+%% The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the synchronous GMRES algorithm.
+
+
+The behavior of multi-core applications is always a challenge to predict, especially with a new architecture for which no experiment has been performed. With some applications, it is difficult, if not impossible, to build accurate performance models. That is why another solution is to use a simulation tool which allows us to change many parameters of the architecture (network bandwidth, latency, number of processors) and to simulate the execution of such applications. 
+
+In this paper we focus on the simulation of iterative algorithms to solve sparse linear systems. We study the behavior of the GMRES algorithm and two different variants of the Multisplitting algorithms: using synchronous or asynchronous iterations. For each algorithm we have simulated different architecture parameters to evaluate their influence on the overall execution time. The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the GMRES algorithm.
 \end{abstract}
 
 %\keywords{Algorithm; distributed; iterative; asynchronous; simulation; simgrid;
 \end{abstract}
 
 %\keywords{Algorithm; distributed; iterative; asynchronous; simulation; simgrid;
@@ -878,7 +873,29 @@ geographically distant clusters through the internet.
 
 
 \section{Conclusion}
 
 
 \section{Conclusion}
-CONCLUSION
+
+In this paper we have presented the simulation of the execution of three
+different parallel solvers on some multi-core architectures. We have show that
+the SimGrid toolkit is an interesting simulation tool that has allowed us to
+determine  which method  to choose  given a  specified multi-core  architecture.
+Moreover the simulated results are in accordance (i.e. with the same order of
+magnitude)  with the works  presented in~\cite{couturier15}. Simulated   results
+also  confirm  the   efficiency  of  the asynchronous  multisplitting
+algorithm  compared  to  the   synchronous  GMRES especially in case of
+geographically distant clusters.
+
+These results are important since it is very  time consuming to find optimal
+configuration  and deployment requirements for a given application  on   a given
+multi-core  architecture. Finding   good  resource allocations policies under
+varying CPU power, network speeds and  loads is very challenging and  labor
+intensive. This problematic is  even more difficult  for the  asynchronous
+scheme where  a small parameter variation of the execution platform and of the
+application data can lead to very different numbers of iterations to reach the
+converge and so to very different execution times.
+
+
+Our future works...
+
 
 
 %\section*{Acknowledgment}
 
 
 %\section*{Acknowledgment}