\todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
\newcommand{\RCE}[2][inline]{%
\todo[color=yellow!10,#1]{\sffamily\textbf{RCE:} #2}\xspace}
+\newcommand{\DL}[2][inline]{%
+ \todo[color=pink!10,#1]{\sffamily\textbf{DL:} #2}\xspace}
\algnewcommand\algorithmicinput{\textbf{Input:}}
\algnewcommand\Input{\item[\algorithmicinput]}
accurate performance models. That is why another solution is to use a simulation
tool which allows us to change many parameters of the architecture (network
bandwidth, latency, number of processors) and to simulate the execution of such
-applications. We have decided to use SimGrid as it enables to benchmark MPI
-applications.
+applications. The main contribution of this paper is to show that the use of a
+simulation tool (here we have decided to use the SimGrid toolkit) can really
+help developpers to better tune their applications for a given multi-core
+architecture.
-In this paper, we focus our attention on two parallel iterative algorithms based
+In particular we focus our attention on two parallel iterative algorithms based
on the Multisplitting algorithm and we compare them to the GMRES algorithm.
-These algorithms are used to solve libear systems. Two different variants of
+These algorithms are used to solve linear systems. Two different variants of
the Multisplitting are studied: one using synchronoous iterations and another
-one with asynchronous iterations. For each algorithm we have tested different
-parameters to see their influence. We strongly recommend people interested
-by investing into a new expensive hardware architecture to benchmark
-their applications using a simulation tool before.
-
-
-
+one with asynchronous iterations. For each algorithm we have simulated
+different architecture parameters to evaluate their influence on the overall
+execution time. The obtain simulated results confirm the real results
+previously obtained on different real multi-core architectures and also confirm
+the efficiency of the asynchronous multisplitting algorithm compared to the
+synchronous GMRES method.
\end{abstract}
tune their application for a given multi-core architecture. To show the validity
of this approach we first compare the simulated execution of the multisplitting
algorithm with the GMRES (Generalized Minimal Residual)
-solver~\cite{saad86} in synchronous mode. The obtained results on different
+solver~\cite{saad86} in synchronous mode.
+
+\LZK{Pas trop convainquant comme argument pour valider l'approche de simulation. \\On peut dire par exemple: on a pu simuler différents algos itératifs à large échelle (le plus connu GMRES et deux variantes de multisplitting) et la simulation nous a permis (sans avoir le vrai matériel) de déterminer quelle serait la meilleure solution pour une telle configuration de l'archi ou vice versa.\\A revoir...}
+
+The obtained results on different
simulated multi-core architectures confirm the real results previously obtained
-on non simulated architectures. We also confirm the efficiency of the
-asynchronous multisplitting algorithm compared to the synchronous GMRES. In
+on non simulated architectures.
+
+\LZK{Il n y a pas dans la partie expé cette comparaison et confirmation des résultats entre la simulation et l'exécution réelle des algos sur les vrais clusters.\\ Sinon on pourrait ajouter dans la partie expé une référence vers le journal supercomput de krylov multi pour confirmer que cette méthode est meilleure que GMRES sur les clusters large échelle.}
+
+We also confirm the efficiency of the
+asynchronous multisplitting algorithm compared to the synchronous GMRES.
+
+\LZK{P.S.: Pour tout le papier, le principal objectif n'est pas de faire des comparaisons entre des méthodes itératives!!\\Sinon, les deux algorithmes Krylov multisplitting synchrone et multisplitting asynchrone sont plus efficaces que GMRES sur des clusters à large échelle.\\Et préciser, si c'est vraiment le cas, que le multisplitting asynchrone est plus efficace et adapté aux clusters distants par rapport aux deux autres algos (je n'ai pas encore lu la partie expé)}
+
+In
this way and with a simple computing architecture (a laptop) SimGrid allows us
to run a test campaign of a real parallel iterative applications on
different simulated multi-core architectures. To our knowledge, there is no
experimental results are presented in section~\ref{sec:expe} followed by some
concluding remarks and perspectives.
+\LZK{Proposition d'un titre pour le papier: Grid-enabled simulation of large-scale linear iterative solvers.}
-\section{The asynchronous iteration model}
+
+\section{The asynchronous iteration model and the motivations of our work}
\label{sec:asynchro}
Asynchronous iterative methods have been studied for many years theoritecally and
it must not synchronize all the processors. Interested readers can
consult~\cite{myBCCV05c,bahi07,ccl09:ij}.
+The number of iterations required to reach the convergence is generally greater
+for the asynchronous scheme (this number depends depends on the delay of the
+messages). Note that, it is not the case in the synchronous mode where the
+number of iterations is the same than in the sequential mode. In this way, the
+set of the parameters of the platform (number of nodes, power of nodes,
+inter and intra clusters bandwidth and latency \ldots) and of the
+application can drastically change the number of iterations required to get the
+convergence. It follows that asynchronous iterative algorithms are difficult to
+optimize since the financial and deployment costs on large scale multi-core
+architecture are often very important. So, prior to delpoyment and tests it
+seems very promising to be able to simulate the behavior of asynchronous
+iterative algorithms. The problematic is then to show that the results produce
+by simulation are in accordance with reality i.e. of the same order of
+magnitude. To our knowledge, there is no study on this problematic.
+
\section{SimGrid}
\label{sec:simgrid}
In addition, the following arguments are given to the programs at runtime:
\begin{itemize}
- \item maximum number of inner and outer iterations;
- \item inner and outer precisions;
- \item maximum number of the GMRES restarts in the Arnorldi process;
- \item maximum number of iterations and the tolerance threshold in classical GMRES;
- \item tolerance threshold for outer and inner-iterations;
- \item matrix size (N$_{x}$, N$_{y}$ and N$_{z}$) respectively on $x, y, z$ axis;
- \item matrix diagonal value is fixed to $6.0$ for synchronous Krylov multisplitting experiments and $6.2$ for asynchronous block Jacobi experiments; \RC{CE tu vérifies, je dis ca de tête}
- \item matrix off-diagonal value;
- \item execution mode: synchronous or asynchronous;
- \RCE {C'est ok la liste des arguments du programme mais si Lilia ou toi pouvez preciser pour les arguments pour CGLS ci dessous} \RC{Vu que tu n'as pas fait varier ce paramètre, on peut ne pas en parler}
- \item Size of matrix S;
- \item Maximum number of iterations and tolerance threshold for CGLS.
+ \item maximum number of inner iterations $\MIG$ and outer iterations $\MIM$,
+ \item inner precision $\TOLG$ and outer precision $\TOLM$,
+ \item matrix sizes of the 3D Poisson problem: N$_{x}$, N$_{y}$ and N$_{z}$ on axis $x$, $y$ and $z$ respectively,
+ \item matrix diagonal value is fixed to $6.0$ for synchronous Krylov multisplitting experiments and $6.2$ for asynchronous block Jacobi experiments,
+ \item matrix off-diagonal value is fixed to $-1.0$,
+ \item number of vectors in matrix $S$ (i.e. value of $s$),
+ \item maximum number of iterations $\MIC$ and precision $\TOLC$ for CGLS method,
+ \item maximum number of iterations and precision for the classical GMRES method,
+ \item maximum number of restarts for the Arnorldi process in GMRES method,
+ \item execution mode: synchronous or asynchronous.
\end{itemize}
It should also be noticed that both solvers have been executed with the Simgrid selector \texttt{-cfg=smpi/running\_power} which determines the computational power (here 19GFlops) of the simulator host machine.
a grid environment}
When running a distributed application in a computational grid, many factors may
-have a strong impact on the performances. First of all, the architecture of the
+have a strong impact on the performance. First of all, the architecture of the
grid itself can obviously influence the performance results of the program. The
performance gain might be important theoretically when the number of clusters
and/or the number of nodes (processors/cores) in each individual cluster
increase.
-Another important factor impacting the overall performances of the application
+Another important factor impacting the overall performance of the application
is the network configuration. Two main network parameters can modify drastically
the program output results:
\begin{enumerate}
\subsection{Comparison of GMRES and Krylov Multisplitting algorithms in synchronous mode}
In the scope of this paper, our first objective is to analyze when the Krylov
-Multisplitting method has better performances than the classical GMRES
-method. With an iterative method, better performances mean a smaller number of
-iterations and execution time before reaching the convergence. For a systematic
-study, the experiments should figure out that, for various grid parameters
-values, the simulator will confirm the targeted outcomes, particularly for poor
-and slow networks, focusing on the impact on the communication performance on
-the chosen class of algorithm.
+Multisplitting method has better performance than the classical GMRES
+method. With a synchronous iterative method, better performance means a
+smaller number of iterations and execution time before reaching the convergence.
+For a systematic study, the experiments should figure out that, for various
+grid parameters values, the simulator will confirm the targeted outcomes,
+particularly for poor and slow networks, focusing on the impact on the
+communication performance on the chosen class of algorithm.
The following paragraphs present the test conditions, the output results
and our comments.\\
-\subsubsection{Execution of the the algorithms on various computational grid
-architecture and scaling up the input matrix size}
+\subsubsection{Execution of the algorithms on various computational grid
+architectures and scaling up the input matrix size}
\ \\
% environment
-\begin{figure} [ht!]
+\begin{table} [ht!]
\begin{center}
\begin{tabular}{r c }
\hline
- Grid & 2x16, 4x8, 4x16 and 8x8\\ %\hline
+ Grid Architecture & 2x16, 4x8, 4x16 and 8x8\\ %\hline
Network & N2 : bw=1Gbits/s - lat=5.10$^{-5}$ \\ %\hline
Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ %\hline
- & N$_{x}$ x N$_{y}$ x N$_{z}$ =170 x 170 x 170 \\ \hline
\end{tabular}
-\caption{Clusters x Nodes with N$_{x}$=150 or N$_{x}$=170 \RC{je ne comprends pas la légende... Ca ne serait pas plutot Characteristics of cluster (mais il faudrait lui donner un nom)}}
+\caption{Test conditions: various grid configurations with the input matix size N$_{x}$=150 or N$_{x}$=170 \RC{N2 n'est pas défini..}\RC{Nx est défini, Ny? Nz?}}
+\label{tab:01}
\end{center}
-\end{figure}
+\end{table}
-%\RCE{J'ai voulu mettre les tableaux des données mais je pense que c'est inutile et ça va surcharger}
-
-In this section, we analyze the performences of algorithms running on various
-grid configuration (2x16, 4x8, 4x16 and 8x8). First, the results in Figure~\ref{fig:01}
-show for all grid configuration the non-variation of the number of iterations of
-classical GMRES for a given input matrix size; it is not the case for the
+In this section, we analyze the performance of algorithms running on various
+grid configurations (2x16, 4x8, 4x16 and 8x8). First, the results in Figure~\ref{fig:01}
+show for all grid configurations the non-variation of the number of iterations of
+classical GMRES for a given input matrix size; it is not the case for the
multisplitting method.
\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
\begin{center}
\includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
\end{center}
- \caption{Cluster x Nodes N$_{x}$=150 and N$_{x}$=170}
+ \caption{Various grid configurations with the input matrix size N$_{x}$=150 and N$_{x}$=170\RC{idem}}
\label{fig:01}
\end{figure}
and 4x8). We can observ the low sensitivity of the Krylov multisplitting method
(compared with the classical GMRES) when scaling up the number of the processors
in the grid: in average, the GMRES (resp. Multisplitting) algorithm performs
-40\% better (resp. 48\%) less when running from 2x16=32 to 8x8=64 processors.
+$40\%$ better (resp. $48\%$) when running from 2x16=32 to 8x8=64 processors. \RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?}
-\subsubsection{Running on two different speed cluster inter-networks}
-\ \\
+\subsubsection{Running on two different inter-clusters network speeds \\}
-\begin{figure} [ht!]
+\begin{table} [ht!]
\begin{center}
\begin{tabular}{r c }
\hline
- Grid & 2x16, 4x8\\ %\hline
+ Grid Architecture & 2x16, 4x8\\ %\hline
Network & N1 : bw=10Gbs-lat=8.10$^{-6}$ \\ %\hline
- & N2 : bw=1Gbs-lat=5.10$^{-5}$ \\
- Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline
+ Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline
\end{tabular}
-\caption{Clusters x Nodes - Networks N1 x N2}
+\caption{Test conditions: grid 2x16 and 4x8 with networks N1 vs N2}
+\label{tab:02}
\end{center}
-\end{figure}
+\end{table}
+These experiments compare the behavior of the algorithms running first on a
+speed inter-cluster network (N1) and also on a less performant network (N2). \RC{Il faut définir cela avant...}
+Figure~\ref{fig:02} shows that end users will reduce the execution time
+for both algorithms when using a grid architecture like 4x16 or 8x8: the reduction is about $2$. The results depict also that when
+the network speed drops down (variation of 12.5\%), the difference between the two Multisplitting algorithms execution times can reach more than 25\%.
+%\RC{c'est pas clair : la différence entre quoi et quoi?}
+%\DL{pas clair}
+%\RCE{Modifie}
%\begin{wrapfigure}{l}{100mm}
\begin{figure} [ht!]
\centering
\includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
-\caption{Cluster x Nodes N1 x N2}
+\caption{Grid 2x16 and 4x8 with networks N1 vs N2}
\label{fig:02}
\end{figure}
%\end{wrapfigure}
-These experiments compare the behavior of the algorithms running first on a
-speed inter-cluster network (N1) and also on a less performant network (N2).
-Figure~\ref{fig:02} shows that end users will gain to reduce the execution time
-for both algorithms in using a grid architecture like 4x16 or 8x8: the
-performance was increased in a factor of 2. The results depict also that when
-the network speed drops down (12.5\%), the difference between the execution
-times can reach more than 25\%. \RC{c'est pas clair : la différence entre quoi et quoi?}
\subsubsection{Network latency impacts on performance}
\ \\
-\begin{figure} [ht!]
+\begin{table} [ht!]
\centering
\begin{tabular}{r c }
\hline
- Grid & 2x16\\ %\hline
+ Grid Architecture & 2x16\\ %\hline
Network & N1 : bw=1Gbs \\ %\hline
Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline
\end{tabular}
-\caption{Network latency impact}
-\end{figure}
+\caption{Test conditions: network latency impacts}
+\label{tab:03}
+\end{table}
\begin{figure} [ht!]
\centering
\includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
-\caption{Network latency impact on execution time}
+\caption{Network latency impacts on execution time}
\label{fig:03}
\end{figure}
-According the results in Figure~\ref{fig:03}, a degradation of the network
-latency from 8.10$^{-6}$ to 6.10$^{-5}$ implies an absolute time increase more
-than 75\% (resp. 82\%) of the execution for the classical GMRES (resp. Krylov
+According to the results of Figure~\ref{fig:03}, a degradation of the network
+latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time increase of more
+than $75\%$ (resp. $82\%$) of the execution for the classical GMRES (resp. Krylov
multisplitting) algorithm. In addition, it appears that the Krylov
multisplitting method tolerates more the network latency variation with a less
rate increase of the execution time. Consequently, in the worst case
-(lat=6.10$^{-5 }$), the execution time for GMRES is almost the double than the
+($lat=6.10^{-5 }$), the execution time for GMRES is almost the double than the
time of the Krylov multisplitting, even though, the performance was on the same
-order of magnitude with a latency of 8.10$^{-6}$.
+order of magnitude with a latency of $8.10^{-6}$.
\subsubsection{Network bandwidth impacts on performance}
\ \\
-\begin{figure} [ht!]
+\begin{table} [ht!]
\centering
\begin{tabular}{r c }
\hline
- Grid & 2x16\\ %\hline
+ Grid Architecture & 2x16\\ %\hline
Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\
\end{tabular}
-\caption{Network bandwidth impact}
-\end{figure}
+\caption{Test conditions: Network bandwidth impacts}
+\label{tab:04}
+\end{table}
\begin{figure} [ht!]
\centering
\includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
-\caption{Network bandwith impact on execution time}
+\caption{Network bandwith impacts on execution time}
\label{fig:04}
\end{figure}
-
-
The results of increasing the network bandwidth show the improvement of the
performance for both algorithms by reducing the execution time (see
Figure~\ref{fig:04}). However, in this case, the Krylov multisplitting method
presents a better performance in the considered bandwidth interval with a gain
-of 40\% which is only around 24\% for classical GMRES.
+of $40\%$ which is only around $24\%$ for the classical GMRES.
\subsubsection{Input matrix size impacts on performance}
\ \\
-\begin{figure} [ht!]
+\begin{table} [ht!]
\centering
\begin{tabular}{r c }
\hline
- Grid & 4x8\\ %\hline
- Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\
+ Grid Architecture & 4x8\\ %\hline
+ Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\
Input matrix size & N$_{x}$ = From 40 to 200\\ \hline
\end{tabular}
-\caption{Input matrix size impact}
-\end{figure}
+\caption{Test conditions: Input matrix size impacts}
+\label{tab:05}
+\end{table}
\begin{figure} [ht!]
\centering
\includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
-\caption{Problem size impact on execution time}
+\caption{Problem size impacts on execution time}
\label{fig:05}
\end{figure}
-In these experiments, the input matrix size has been set from N$_{x}$ = N$_{y}$
-= N$_{z}$ = 40 to 200 side elements that is from 40$^{3}$ = 64.000 to 200$^{3}$
-= 8,000,000 points. Obviously, as shown in Figure~\ref{fig:05}, the execution
+In these experiments, the input matrix size has been set from $N_{x} = N_{y}
+= N_{z} = 40$ to $200$ side elements that is from $40^{3} = 64.000$ to $200^{3}
+= 8,000,000$ points. Obviously, as shown in Figure~\ref{fig:05}, the execution
time for both algorithms increases when the input matrix size also increases.
But the interesting results are:
\begin{enumerate}
- \item the drastic increase (300 times) \RC{Je ne vois pas cela sur la figure}
-of the number of iterations needed to reach the convergence for the classical
-GMRES algorithm when the matrix size go beyond N$_{x}$=150;
-\item the classical GMRES execution time is almost the double for N$_{x}$=140
+ \item the drastic increase ($10$ times) \RC{Je ne vois pas cela sur la figure}
+\RCE{Corrige} of the number of iterations needed to reach the convergence for the classical
+GMRES algorithm when the matrix size go beyond $N_{x}=150$;
+\item the classical GMRES execution time is almost the double for $N_{x}=140$
compared with the Krylov multisplitting method.
\end{enumerate}
size scale up. It should be noticed that the same test has been done with the
grid 2x16 leading to the same conclusion.
-\subsubsection{CPU Power impact on performance}
+\subsubsection{CPU Power impacts on performance}
-\begin{figure} [ht!]
+\begin{table} [ht!]
\centering
\begin{tabular}{r c }
\hline
- Grid & 2x16\\ %\hline
+ Grid architecture & 2x16\\ %\hline
Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
Input matrix size & N$_{x}$ = 150 x 150 x 150\\ \hline
\end{tabular}
-\caption{CPU Power impact}
-\end{figure}
+\caption{Test conditions: CPU Power impacts}
+\label{tab:06}
+\end{table}
\begin{figure} [ht!]
\centering
\includegraphics[width=100mm]{cpu_power_impact_on_execution_time.pdf}
-\caption{CPU Power impact on execution time}
+\caption{CPU Power impacts on execution time}
\label{fig:06}
\end{figure}
Using the Simgrid simulator flexibility, we have tried to determine the impact
on the algorithms performance in varying the CPU power of the clusters nodes
-from 1 to 19 GFlops. The outputs depicted in Figure~\ref{fig:06} confirm the
-performance gain, around 95\% for both of the two methods, after adding more
+from $1$ to $19$ GFlops. The outputs depicted in Figure~\ref{fig:06} confirm the
+performance gain, around $95\%$ for both of the two methods, after adding more
powerful CPU.
+\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà
+obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas
+besoin de déployer sur une archi réelle}
+
+
\subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode}
The previous paragraphs put in evidence the interests to simulate the behavior
of the application before any deployment in a real environment. In this
section, following the same previous methodology, our goal is to compare the
-efficiency of the multisplitting method in \textit{ asynchronous mode} with the
+efficiency of the multisplitting method in \textit{ asynchronous mode} compared with the
classical GMRES in \textit{synchronous mode}.
The interest of using an asynchronous algorithm is that there is no more
performance.
\RC{la phrase suivante est bizarre, je ne comprends pas pourquoi elle vient ici}
-As stated before, the Simgrid simulator tool has been successfully used to show
+In this section, Simgrid simulator tool has been successfully used to show
the efficiency of the multisplitting in asynchronous mode and to find the best
combination of the grid resources (CPU, Network, input matrix size, \ldots ) to
get the highest \textit{"relative gain"} (exec\_time$_{GMRES}$ /
exec\_time$_{multisplitting}$) in comparison with the classical GMRES time.
-The test conditions are summarized in the table below : \\
+The test conditions are summarized in the table~\ref{tab:07}: \\
-\begin{figure} [ht!]
+\begin{table} [ht!]
\centering
\begin{tabular}{r c }
\hline
- Grid & 2x50 totaling 100 processors\\ %\hline
+ Grid Architecture & 2x50 totaling 100 processors\\ %\hline
Processors Power & 1 GFlops to 1.5 GFlops\\
Intra-Network & bw=1.25 Gbits - lat=5.10$^{-5}$ \\ %\hline
Inter-Network & bw=5 Mbits - lat=2.10$^{-2}$\\
Input matrix size & N$_{x}$ = From 62 to 150\\ %\hline
Residual error precision & 10$^{-5}$ to 10$^{-9}$\\ \hline \\
\end{tabular}
-\end{figure}
+\caption{Test conditions: GMRES in synchronous mode vs Krylov Multisplitting in asynchronous mode}
+\label{tab:07}
+\end{table}
Again, comprehensive and extensive tests have been conducted with different
-parametes as the CPU power, the network parameters (bandwidth and latency) in
-the simulator tool and with different problem size. The relative gains greater
-than 1 between the two algorithms have been captured after each step of the
-test. In Figure~\ref{table:01} are reported the best grid configurations
-allowing the multisplitting method to be more than 2.5 times faster than the
+parameters as the CPU power, the network parameters (bandwidth and latency)
+and with different problem size. The relative gains greater than $1$ between the
+two algorithms have been captured after each step of the test. In
+Figure~\ref{fig:07} are reported the best grid configurations allowing
+the multisplitting method to be more than $2.5$ times faster than the
classical GMRES. These experiments also show the relative tolerance of the
multisplitting algorithm when using a low speed network as usually observed with
-geographically distant clusters throuth the internet.
+geographically distant clusters through the internet.
% use the same column width for the following three tables
\newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
\end{mytable}
%\end{table}
\caption{Relative gain of the multisplitting algorithm compared with the classical GMRES}
- \label{table:01}
+ \label{fig:07}
\end{figure}