]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
DL : expé suite et fin
[rce2015.git] / paper.tex
index e28cc0367ea71b6af53eb2fa7a3e65bef6d94a41..de34cb654bd735c79c91c4df6a3d0cba5d9c8ac5 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 %% help developers to better tune their applications for a given multi-core
 %% architecture.
 
 %% help developers to better tune their applications for a given multi-core
 %% architecture.
 
-%% In this paper we focus our attention on the simulation of iterative algorithms to solve sparse linear systems on large clusters. We study the behavior of the widely used GMRES algorithm and two different variants of the Multisplitting algorithms: one using synchronous iterations and another one with asynchronous iterations.  
+%% In this paper we focus our attention on the simulation of iterative algorithms to solve sparse linear systems on large clusters. We study the behavior of the widely used GMRES algorithm and two different variants of the Multisplitting algorithms: one using synchronous iterations and another one with asynchronous iterations.
 %% For each algorithm we have simulated
 %% different architecture parameters to evaluate their influence on the overall
 %% For each algorithm we have simulated
 %% different architecture parameters to evaluate their influence on the overall
-%% execution time. 
+%% execution time.
 %% The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the synchronous GMRES algorithm.
 
 %% The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the synchronous GMRES algorithm.
 
-The behavior of multi-core applications is always a challenge to predict, especially with a new architecture for which no experiment has been performed. With some applications, it is difficult, if not impossible, to build accurate performance models. That is why another solution is to use a simulation tool which allows us to change many parameters of the architecture (network bandwidth, latency, number of processors) and to simulate the execution of such applications. 
+The behavior of multi-core applications is always a challenge to predict, especially with a new architecture for which no experiment has been performed. With some applications, it is difficult, if not impossible, to build accurate performance models. That is why another solution is to use a simulation tool which allows us to change many parameters of the architecture (network bandwidth, latency, number of processors) and to simulate the execution of such applications.
 
 In this paper we focus on the simulation of iterative algorithms to solve sparse linear systems. We study the behavior of the GMRES algorithm and two different variants of the multisplitting algorithms: using synchronous or asynchronous iterations. For each algorithm we have simulated different architecture parameters to evaluate their influence on the overall execution time. The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous multisplitting algorithm on distant clusters compared to the GMRES algorithm.
 
 
 In this paper we focus on the simulation of iterative algorithms to solve sparse linear systems. We study the behavior of the GMRES algorithm and two different variants of the multisplitting algorithms: using synchronous or asynchronous iterations. For each algorithm we have simulated different architecture parameters to evaluate their influence on the overall execution time. The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous multisplitting algorithm on distant clusters compared to the GMRES algorithm.
 
@@ -460,7 +460,13 @@ where the real-valued function $\phi(x,y,z)$ is the solution sought, $f(x,y,z)$
 \end{equation}
 until convergence where $h$ is the grid spacing between two adjacent elements in the 3D computational grid.
 
 \end{equation}
 until convergence where $h$ is the grid spacing between two adjacent elements in the 3D computational grid.
 
-In the parallel context, the 3D Poisson problem is partitioned into $L\times p$ sub-problems such that $L$ is the number of clusters and $p$ is the number of processors in each cluster. We apply the three-dimensional partitioning instead of the row-by-row one in order to reduce the size of the data shared at the sub-problems boundaries. In this case, each processor is in charge of parallelepipedic block of the problem and has at most six neighbors in the same cluster or in distant clusters with which it shares data at boundaries.
+In the parallel context, the 3D Poisson problem is partitioned into $L\times p$
+sub-problems such that $L$ is the number of clusters and $p$ is the number of
+processors in each cluster. We apply the three-dimensional partitioning instead
+of the row-by-row one in order to reduce the size of the data shared at the
+sub-problems boundaries. In this case, each processor is in charge of
+parallelepipedic block of the problem and has at most six neighbors in the same
+cluster or in distant clusters with which it shares data at boundaries.
 
 \subsection{Study setup and simulation methodology}
 
 
 \subsection{Study setup and simulation methodology}
 
@@ -518,29 +524,40 @@ the program output results:
 Upon  the   network  characteristics,  another  impacting   factor  is  the volume of data exchanged  between the nodes in the cluster
 and  between distant  clusters.  This parameter is application dependent.
 
 Upon  the   network  characteristics,  another  impacting   factor  is  the volume of data exchanged  between the nodes in the cluster
 and  between distant  clusters.  This parameter is application dependent.
 
- In  a grid  environment, it  is common  to distinguish,  on the  one hand,  the
- "intra-network" which refers  to the links between nodes within  a cluster and
- on  the other  hand, the  "inter-network" which  is the  backbone link  between
- clusters.  In   practice,  these  two   networks  have  different   speeds.
- The intra-network  generally works  like a  high speed  local network  with a
- high bandwidth and very low latency. In opposite, the inter-network connects
- clusters sometime via  heterogeneous networks components  through internet with
- a lower speed.  The network  between distant  clusters might  be a  bottleneck
- for  the global performance of the application.
-
-
-\subsection{Comparison between GMRES and two-stage multisplitting algorithms in synchronous mode}
-In the scope of this paper, our first objective is to analyze when the synchronous Krylov two-stage method has better performance than the classical GMRES method. With a synchronous iterative method, better performance means a smaller number of iterations and execution time before reaching the convergence.
-
-Table~\ref{tab:01} summarizes the parameters used in the different simulations: the grid architectures, the network of inter-clusters backbone links and the matrix sizes of the 3D Poisson problem. However, for all simulations we fix the network parameters of the intra-clusters links: the bandwidth $bw$=10Gbs and the latency $lat=8\mu$s. In what follows, we will present the test conditions, the output results and our comments. 
+ In  a grid  environment, it  is common  to distinguish,  on one hand,  the
+ \textit{intra-network} which refers  to the links between nodes within  a
+ cluster and on  the other  hand, the  \textit{inter-network} which  is the
+ backbone link  between clusters.  In   practice,  these  two   networks  have
+ different   speeds. The intra-network  generally works  like a  high speed
+ local network  with a high bandwidth and very low latency. In opposite, the
+ inter-network connects clusters sometime via  heterogeneous networks components
+ through internet with a lower speed.  The network  between distant  clusters
+ might  be a  bottleneck for  the global performance of the application.
+
+
+\subsection{Comparison between GMRES and two-stage multisplitting algorithms in
+synchronous mode}
+In the scope of this paper, our first objective is to analyze
+when the synchronous Krylov two-stage method has better performance than the
+classical GMRES method. With a synchronous iterative method, better performance
+means a smaller number of iterations and execution time before reaching the
+convergence.
+
+Table~\ref{tab:01} summarizes the parameters used in the different simulations:
+the grid architectures (i.e. the number of clusters and the number of nodes per
+cluster), the network of inter-clusters backbone links and the matrix sizes of
+the 3D Poisson problem. However, for all simulations we fix the network
+parameters of the intra-clusters links: the bandwidth $bw$=10Gbs and the latency
+$lat=8\mu$s. In what follows, we will present the test conditions, the output
+results and our comments.
 
 \begin{table} [ht!]
 \begin{center}
 \begin{tabular}{ll}
 \hline
 
 \begin{table} [ht!]
 \begin{center}
 \begin{tabular}{ll}
 \hline
-Grid architecture                       & 2$\times$16, 4$\times$8, 4$\times$16 and 8$\times$8\\ 
+Grid architecture                       & 2$\times$16, 4$\times$8, 4$\times$16 and 8$\times$8\\
 \multirow{2}{*}{Network inter-clusters} & $N1$: $bw$=10Gbs, $lat=8\mu$s \\
 \multirow{2}{*}{Network inter-clusters} & $N1$: $bw$=10Gbs, $lat=8\mu$s \\
-                                        & $N2$: $bw$=1Gbs, $lat=50\mu$s \\ 
+                                        & $N2$: $bw$=1Gbs, $lat=50\mu$s \\
 \multirow{2}{*}{Matrix size}            & $Mat1$: N$_{x}\times$N$_{y}\times$N$_{z}$=150$\times$150$\times$150\\
                                         & $Mat2$: N$_{x}\times$N$_{y}\times$N$_{z}$=170$\times$170$\times$170 \\ \hline
 \end{tabular}
 \multirow{2}{*}{Matrix size}            & $Mat1$: N$_{x}\times$N$_{y}\times$N$_{z}$=150$\times$150$\times$150\\
                                         & $Mat2$: N$_{x}\times$N$_{y}\times$N$_{z}$=170$\times$170$\times$170 \\ \hline
 \end{tabular}
@@ -554,21 +571,31 @@ Grid architecture                       & 2$\times$16, 4$\times$8, 4$\times$16 a
 In  this  section,  we  analyze   the  simulations  conducted  on  various  grid
 configurations and for different sizes of the 3D Poisson problem. The parameters
 of    the    network    between    clusters    is    fixed    to    $N2$    (see
 In  this  section,  we  analyze   the  simulations  conducted  on  various  grid
 configurations and for different sizes of the 3D Poisson problem. The parameters
 of    the    network    between    clusters    is    fixed    to    $N2$    (see
-Table~\ref{tab:01}). Figure~\ref{fig:01} shows, for all grid configurations and a
-given matrix size 170$^3$ elements, a  non-variation in the number of iterations
-for the classical GMRES algorithm, which is not the case of the Krylov two-stage
-algorithm. In fact, with multisplitting  algorithms, the number of splitting (in
-our case, it is the number of clusters) influences on the convergence speed. The
-higher the number  of splitting is, the slower the  convergence of the algorithm
-is (see the output results obtained from configurations 2$\times$16 vs. 4$\times$8 and configurations 4$\times$16 vs. 8$\times$8).
-
-The execution times between both algorithms is significant with different grid architectures. The synchronous Krylov two-stage algorithm presents better performances than the GMRES algorithm, even for a high number of clusters (about $32\%$ more efficient on a grid of 8$\times$8 than GMRES). In addition, we can observe a better sensitivity of the Krylov two-stage algorithm (compared to the GMRES one) when scaling up the number of the processors in the computational grid: the Krylov two-stage algorithm is about $48\%$ and the GMRES algorithm is about $40\%$ better on 64 processors (grid of 8$\times$8) than 32 processors (grid of 2$\times$16). 
+Table~\ref{tab:01}). Figure~\ref{fig:01} shows, for all grid configurations and
+a given matrix size of 170$^3$ elements, a  non-variation in the number of
+iterations for the classical GMRES algorithm, which is not the case of the
+Krylov two-stage algorithm. In fact, with multisplitting  algorithms, the number
+of splitting (in our case, it is equal to the number of clusters) influences on the
+convergence speed. The higher the number  of splitting is, the slower the
+convergence of the algorithm is (see the output results obtained from
+configurations 2$\times$16 vs. 4$\times$8 and configurations 4$\times$16 vs.
+8$\times$8).
+
+The execution times between both algorithms is significant with different grid
+architectures. The synchronous Krylov two-stage algorithm presents better
+performances than the GMRES algorithm, even for a high number of clusters (about
+$32\%$ more efficient on a grid of 8$\times$8 than GMRES). In addition, we can
+observe a better sensitivity of the Krylov two-stage algorithm (compared to the
+GMRES one) when scaling up the number of the processors in the computational
+grid: the Krylov two-stage algorithm is about $48\%$ and the GMRES algorithm is
+about $40\%$ better on $64$ processors (grid of 8$\times$8) than $32$ processors
+(grid of 2$\times$16).
 
 \begin{figure}[ht]
 \begin{center}
 \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
 \end{center}
 
 \begin{figure}[ht]
 \begin{center}
 \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
 \end{center}
-\caption{Various grid configurations with the matrix sizes 150$^3$ and 170$^3$}
+\caption{Various grid configurations with two matrix sizes: $150^3$ and $170^3$}
 \label{fig:01}
 \end{figure}
 
 \label{fig:01}
 \end{figure}
 
@@ -586,13 +613,14 @@ efficient for distributed systems with high latency networks.
 \begin{figure}[ht]
 \centering
 \includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
 \begin{figure}[ht]
 \centering
 \includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
-\caption{Various grid configurations with networks $N1$ vs. $N2$}
+\caption{Various grid configurations with two networks parameters: $N1$ vs. $N2$}
 \LZK{CE, remplacer les ``,'' des décimales par un ``.''}
 \LZK{CE, remplacer les ``,'' des décimales par un ``.''}
+\RCE{ok}
 \label{fig:02}
 \end{figure}
 
 \subsubsection{Network latency impacts on performances\\}
 \label{fig:02}
 \end{figure}
 
 \subsubsection{Network latency impacts on performances\\}
-Figure~\ref{fig:03} shows the impact of the network latency on the performances of both algorithms. The simulation is conducted on a computational grid of 2 clusters of 16 processors each (i.e. configuration 2$\times$16) interconnected by a network of bandwidth $bw$=1Gbs to solve a 3D Poisson problem of size $150^3$. According to the results, a degradation of the network latency from $8\mu$s to $60\mu$s implies an absolute execution time increase for both algorithms, but not with the same rate of degradation. The GMRES algorithm is more sensitive to the latency degradation than the Krylov two-stage algorithm. 
+Figure~\ref{fig:03} shows the impact of the network latency on the performances of both algorithms. The simulation is conducted on a computational grid of 2 clusters of 16 processors each (i.e. configuration 2$\times$16) interconnected by a network of bandwidth $bw$=1Gbs to solve a 3D Poisson problem of size $150^3$. According to the results, a degradation of the network latency from $8\mu$s to $60\mu$s implies an absolute execution time increase for both algorithms, but not with the same rate of degradation. The GMRES algorithm is more sensitive to the latency degradation than the Krylov two-stage algorithm.
 
 \begin{figure}[ht]
 \centering
 
 \begin{figure}[ht]
 \centering
@@ -602,7 +630,15 @@ Figure~\ref{fig:03} shows the impact of the network latency on the performances
 \end{figure}
 
 \subsubsection{Network bandwidth impacts on performances\\}
 \end{figure}
 
 \subsubsection{Network bandwidth impacts on performances\\}
-Figure~\ref{fig:04} reports the results obtained for the simulation of a grid of 2$\times$16 processors interconnected by a network of latency $lat=50\mu$s to solve a 3D Poisson problem of size $150^3$. The results of increasing the network bandwidth from 1Gbs to 10Gbs show the performances improvement for both algorithms by reducing the execution times. However, the Krylov two-stage algorithm presents a better performance in the considered bandwidth interval with a gain of $40\%$ compared to only about $24\%$ for the classical GMRES algorithm.
+
+Figure~\ref{fig:04} reports the results obtained for the simulation of a grid of
+$2\times16$ processors interconnected by a network of latency $lat=50\mu$s to
+solve a 3D Poisson problem of size $150^3$. The results of increasing the
+network bandwidth from $1$Gbs to $10$Gbs show the performances improvement for
+both algorithms by reducing the execution times. However, the Krylov two-stage
+algorithm presents a better performance gain in the considered bandwidth
+interval with a gain of $40\%$ compared to only about $24\%$ for the classical
+GMRES algorithm.
 
 \begin{figure}[ht]
 \centering
 
 \begin{figure}[ht]
 \centering
@@ -612,8 +648,19 @@ Figure~\ref{fig:04} reports the results obtained for the simulation of a grid of
 \end{figure}
 
 \subsubsection{Matrix size impacts on performances\\}
 \end{figure}
 
 \subsubsection{Matrix size impacts on performances\\}
-In these experiments, the matrix size of the 3D Poisson problem is varied from $50^3$ to $190^3$ elements. The simulated computational grid is composed of 4 clusters of 8 processors each interconnected by the network $N2$ (see Table~\ref{tab:01}). Obviously, as shown in Figure~\ref{fig:05}, the execution times for both algorithms increase with increased matrix sizes.  For all problem sizes, GMRES algorithm is always slower than the Krylov two-stage algorithm. Moreover, for this benchmark, it seems that the greater the problem size is, the bigger the ratio between execution times of both algorithms is. We can also observe that for some problem sizes, the convergence (and thus the execution time) of the Krylov two-stage algorithm varies quite a lot. %This is due to the 3D partitioning of the 3D matrix of the Poisson problem. 
-These findings may help a lot end users to setup the best and the optimal targeted environment for the application deployment when focusing on the problem size scale up. 
+
+In these experiments, the matrix size of the 3D Poisson problem is varied from
+$50^3$ to $190^3$ elements. The simulated computational grid is composed of $4$
+clusters of $8$ processors each interconnected by the network $N2$ (see
+Table~\ref{tab:01}). As shown in Figure~\ref{fig:05}, the execution
+times for both algorithms increase with increased matrix sizes.  For all problem
+sizes, the GMRES algorithm is always slower than the Krylov two-stage algorithm.
+Moreover, for this benchmark, it seems that the greater the problem size is, the
+bigger the ratio between execution times of both algorithms is. We can also
+observe that for some problem sizes, the convergence (and thus the execution
+time) of the Krylov two-stage algorithm varies quite a lot.
+%This is due to the 3D partitioning of the 3D matrix of the Poisson problem.
+These findings may help a lot end users to setup the best and the optimal targeted environment for the application deployment when focusing on the problem size scale up.
 
 \begin{figure}[ht]
 \centering
 
 \begin{figure}[ht]
 \centering
@@ -623,7 +670,15 @@ These findings may help a lot end users to setup the best and the optimal target
 \end{figure}
 
 \subsubsection{CPU power impacts on performances\\}
 \end{figure}
 
 \subsubsection{CPU power impacts on performances\\}
-Using the SimGrid simulator flexibility, we have tried to determine the impact of the CPU power of the processors in the different clusters on performances of both algorithms. We have varied the CPU power from $1$GFlops to $19$GFlops. The simulation is conducted in a grid of 2$\times$16 processors interconnected by the network $N2$ (see Table~\ref{tab:01}) to solve a 3D Poisson problem of size $150^3$. The results depicted in Figure~\ref{fig:06} confirm the performance gain, about $95\%$ for both algorithms, after improving the CPU power of processors.
+
+Using the SimGrid simulator flexibility, we have tried to determine the impact
+of the CPU power of the processors in the different clusters on performances of
+both algorithms. We have varied the CPU power from $1$GFlops to $19$GFlops. The
+simulation is conducted on a grid of $2\times16$ processors interconnected by
+the network $N2$ (see Table~\ref{tab:01}) to solve a 3D Poisson problem of size
+$150^3$. The results depicted in Figure~\ref{fig:06} confirm the performance
+gain, about $95\%$ for both algorithms, after improving the CPU power of
+processors.
 
 \begin{figure}[ht]
 \centering
 
 \begin{figure}[ht]
 \centering
@@ -632,11 +687,12 @@ Using the SimGrid simulator flexibility, we have tried to determine the impact o
 \label{fig:06}
 \end{figure}
 \ \\
 \label{fig:06}
 \end{figure}
 \ \\
+
 To conclude these series of experiments, with  SimGrid we have been able to make
 many simulations  with many parameters  variations. Doing all  these experiments
 To conclude these series of experiments, with  SimGrid we have been able to make
 many simulations  with many parameters  variations. Doing all  these experiments
-with a real platform is most of  the time not possible. Moreover the behavior of
-both GMRES and  Krylov two-stage algorithms is in accordance  with larger real
-executions on large scale supercomputers~\cite{couturier15}.
+with a real platform is most of the time not possible or very costly. Moreover
+the behavior of both GMRES and  Krylov two-stage algorithms is in accordance
+with larger real executions on large scale supercomputers~\cite{couturier15}.
 
 
 \subsection{Comparison between synchronous GMRES and asynchronous two-stage multisplitting algorithms}
 
 
 \subsection{Comparison between synchronous GMRES and asynchronous two-stage multisplitting algorithms}
@@ -649,7 +705,7 @@ classical GMRES in \textit{synchronous mode}.
 
 The  interest of  using  an asynchronous  algorithm  is that  there  is no  more
 synchronization. With  geographically distant  clusters, this may  be essential.
 
 The  interest of  using  an asynchronous  algorithm  is that  there  is no  more
 synchronization. With  geographically distant  clusters, this may  be essential.
-In  this case,  each  processor can  compute its  iteration  freely without  any
+In  this case,  each  processor can  compute its  iterations  freely without  any
 synchronization  with   the  other   processors.  Thus,  the   asynchronous  may
 theoretically reduce  the overall execution  time and can improve  the algorithm
 performance.
 synchronization  with   the  other   processors.  Thus,  the   asynchronous  may
 theoretically reduce  the overall execution  time and can improve  the algorithm
 performance.
@@ -658,11 +714,12 @@ In this section,  the SimGrid simulator is  used to compare the  behavior of the
 two-stage algorithm in  asynchronous mode  with GMRES  in synchronous  mode.  Several
 benchmarks have  been performed with  various combinations of the  grid resources
 (CPU, Network, matrix size, \ldots). The test  conditions are summarized
 two-stage algorithm in  asynchronous mode  with GMRES  in synchronous  mode.  Several
 benchmarks have  been performed with  various combinations of the  grid resources
 (CPU, Network, matrix size, \ldots). The test  conditions are summarized
-in  Table~\ref{tab:07}. In  order to  compare  the execution  times, this table
-reports the  relative gain between both  algorithms. It is defined  by the ratio
+in  Table~\ref{tab:02}. In  order to  compare  the execution  times. Table~\ref{tab:03}
+reports the  relative gains between both  algorithms. It is defined  by the ratio
 between  the   execution  time  of   GMRES  and   the  execution  time   of  the
 between  the   execution  time  of   GMRES  and   the  execution  time   of  the
-multisplitting.  
+multisplitting.
 \LZK{Quelle table repporte les gains relatifs?? Sûrement pas Table II !!}
 \LZK{Quelle table repporte les gains relatifs?? Sûrement pas Table II !!}
+\RCE{Table III avec la nouvelle numerotation}
 The  ratio  is  greater  than  one  because  the  asynchronous
 multisplitting version is faster than GMRES.
 
 The  ratio  is  greater  than  one  because  the  asynchronous
 multisplitting version is faster than GMRES.
 
@@ -673,12 +730,12 @@ multisplitting version is faster than GMRES.
  Grid architecture                       & 2$\times$50 totaling 100 processors\\
  Processors Power                        & 1 GFlops to 1.5 GFlops \\
  \multirow{2}{*}{Network inter-clusters} & $bw$=1.25 Gbits, $lat=50\mu$s \\
  Grid architecture                       & 2$\times$50 totaling 100 processors\\
  Processors Power                        & 1 GFlops to 1.5 GFlops \\
  \multirow{2}{*}{Network inter-clusters} & $bw$=1.25 Gbits, $lat=50\mu$s \\
-                                         & $bw$=5 Mbits, $lat=20ms$s\\
+                                         & $bw$=5 Mbits, $lat=20ms$\\
  Matrix size                             & from $62^3$ to $150^3$\\
  Residual error precision                & $10^{-5}$ to $10^{-9}$\\ \hline \\
  \end{tabular}
 \caption{Test conditions: GMRES in synchronous mode vs. Krylov two-stage in asynchronous mode}
  Matrix size                             & from $62^3$ to $150^3$\\
  Residual error precision                & $10^{-5}$ to $10^{-9}$\\ \hline \\
  \end{tabular}
 \caption{Test conditions: GMRES in synchronous mode vs. Krylov two-stage in asynchronous mode}
-\label{tab:07}
+\label{tab:02}
 \end{table}
 
 
 \end{table}
 
 
@@ -719,7 +776,7 @@ multisplitting version is faster than GMRES.
   \end{mytable}
 %\end{table}
  \caption{Relative gains of the two-stage multisplitting algorithm compared with the classical GMRES}
   \end{mytable}
 %\end{table}
  \caption{Relative gains of the two-stage multisplitting algorithm compared with the classical GMRES}
- \label{tab:08}
+ \label{tab:03}
 \end{table}
 
 Again,  comprehensive and  extensive tests  have been  conducted with  different
 \end{table}
 
 Again,  comprehensive and  extensive tests  have been  conducted with  different