\hline
Grid Architecture & 4 $\times$ 8\\ %\hline
Inter Network & $bw$=1Gbs - $lat$=5.10$^{-5}$ \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 40$^{3}$ to 200$^{3}$\\ \hline
+ Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 50$^{3}$ to 190$^{3}$\\ \hline
\end{tabular}
\caption{Test conditions: Input matrix size impacts}
\label{tab:05}
\label{fig:05}
\end{figure}
-In these experiments, the input matrix size has been set from $N_{x} = N_{y}
-= N_{z} = 40$ to $200$ side elements that is from $40^{3} = 64.000$ to $200^{3}
-= 8,000,000$ points. Obviously, as shown in Figure~\ref{fig:05}, the execution
-time for both algorithms increases when the input matrix size also increases.
-But the interesting results are:
-\begin{enumerate}
- \item the important increase ($10$ times) of the number of iterations needed to
- reach the convergence for the classical GMRES algorithm particularly, when the matrix size
- go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire}
- \RCE{Le nombre d'iterations augmente de 10 fois, cela surtout a partir de N=150}
-
-\item the classical GMRES execution time is almost the double for $N_{x}=140$
- compared with the Krylov multisplitting method.
-\end{enumerate}
+In these experiments, the input matrix size has been set from $50^3$ to
+$190^3$. Obviously, as shown in Figure~\ref{fig:05}, the execution time for both
+algorithms increases when the input matrix size also increases. For all problem
+sizes, GMRES is always slower than the Krylov multisplitting. Moreover, for this
+benchmark, it seems that the greater the problem size is, the bigger the ratio
+between both algorithm execution times is. We can also observ that for some
+problem sizes, the Krylov multisplitting convergence varies quite a
+lot. Consequently the execution times in that cases also varies.
+
These findings may help a lot end users to setup the best and the optimal
targeted environment for the application deployment when focusing on the problem