accurate performance models. That is why another solution is to use a simulation
tool which allows us to change many parameters of the architecture (network
bandwidth, latency, number of processors) and to simulate the execution of such
-applications. We have decided to use SimGrid as it enables to benchmark MPI
-applications.
+applications. The main contribution of this paper is to show that the use of a
+simulation tool (here we have decided to use the SimGrid toolkit) can really
+help developpers to better tune their applications for a given multi-core
+architecture.
-In this paper, we focus our attention on two parallel iterative algorithms based
+In particular we focus our attention on two parallel iterative algorithms based
on the Multisplitting algorithm and we compare them to the GMRES algorithm.
-These algorithms are used to solve libear systems. Two different variants of
+These algorithms are used to solve linear systems. Two different variants of
the Multisplitting are studied: one using synchronoous iterations and another
-one with asynchronous iterations. For each algorithm we have tested different
-parameters to see their influence. We strongly recommend people interested
-by investing into a new expensive hardware architecture to benchmark
-their applications using a simulation tool before.
-
-
-
+one with asynchronous iterations. For each algorithm we have simulated
+different architecture parameters to evaluate their influence on the overall
+execution time. The obtain simulated results confirm the real results
+previously obtained on different real multi-core architectures and also confirm
+the efficiency of the asynchronous multisplitting algorithm compared to the
+synchronous GMRES method.
\end{abstract}