-\subsubsection{Network latency impacts on performance}
-\ \\
-\begin{table} [ht!]
-\centering
-\begin{tabular}{r c }
- \hline
- Grid Architecture & 2 $\times$ 16\\ %\hline
- \multirow{2}{*}{Inter Network N1} & $bw$=1Gbs, \\ %\hline
- & $lat$= From 8$\times$10$^{-6}$ to $6.10^{-5}$ second \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z} = 150 \times 150 \times 150$\\ \hline
- \end{tabular}
-\caption{Test conditions: network latency impacts}
-\label{tab:03}
-\end{table}
-
-\begin{figure} [htbp]
-\centering
-\includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
-\caption{Network latency impacts on execution time}
-%\AG{\np{E-6}}}
-\label{fig:03}
-\end{figure}
-
-In Table~\ref{tab:03}, parameters for the influence of the network latency are
-reported. According to the results of Figure~\ref{fig:03}, a degradation of the
-network latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time
-increase of more than $75\%$ (resp. $82\%$) of the execution for the classical
-GMRES (resp. Krylov multisplitting) algorithm. The execution time factor
-between the two algorithms varies from 2.2 to 1.5 times with a network latency
-decreasing from $8.10^{-6}$ to $6.10^{-5}$ second.