-configurations presented in Table~\ref{tab:01}. It should be noticed that two
-networks are considered: N1 is the network between clusters (inter-cluster) and
-N2 is the network inside a cluster (intra-cluster). Figure~\ref{fig:01} shows,
-for all grid configurations and a given matrix size, a non-variation in the
-number of iterations for the classical GMRES algorithm, which is not the case of
-the Krylov two-stage algorithm.
-%% First, the results in Figure~\ref{fig:01}
-%% show for all grid configurations the non-variation of the number of iterations of
-%% classical GMRES for a given input matrix size; it is not the case for the
-%% multisplitting method.
-%\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
-%\RC{Les légendes ne sont pas explicites...}
-%\RCE{Corrige}
-
-\begin{figure} [htbp]
- \begin{center}
- \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
- \end{center}
- \caption{Various grid configurations with the matrix sizes 150$^3$ and 170$^3$}
-%\AG{Utiliser le point comme séparateur décimal et non la virgule. Idem dans les autres figures.}
-%\LZK{Pour quelle taille du problème sont calculés les nombres d'itérations? Que représente le 2 Clusters x 16 Nodes with Nx=150 and Nx=170 en haut de la figure?}
- %\RCE {Corrige}
- \RC{Idéalement dans la légende il faudrait insiquer Pb size=$150^3$ ou $170^3$ car pour l'instant Nx=150 ca n'indique rien concernant Ny et Nz}
- \label{fig:01}
+configurations and for different sizes of the 3D Poisson problem. The parameters
+of the network between clusters is fixed to $N2$ (see
+Table~\ref{tab:01}). Figure~\ref{fig:01} shows, for all grid configurations and a
+given matrix size 170$^3$ elements, a non-variation in the number of iterations
+for the classical GMRES algorithm, which is not the case of the Krylov two-stage
+algorithm. In fact, with multisplitting algorithms, the number of splitting (in
+our case, it is the number of clusters) influences on the convergence speed. The
+higher the number of splitting is, the slower the convergence of the algorithm
+is (see the output results obtained from configurations 2$\times$16 vs. 4$\times$8 and configurations 4$\times$16 vs. 8$\times$8).
+
+The execution times between both algorithms is significant with different grid architectures. The synchronous Krylov two-stage algorithm presents better performances than the GMRES algorithm, even for a high number of clusters (about $32\%$ more efficient on a grid of 8$\times$8 than GMRES). In addition, we can observe a better sensitivity of the Krylov two-stage algorithm (compared to the GMRES one) when scaling up the number of the processors in the computational grid: the Krylov two-stage algorithm is about $48\%$ and the GMRES algorithm is about $40\%$ better on 64 processors (grid of 8$\times$8) than 32 processors (grid of 2$\times$16).
+
+\begin{figure}[t]
+\begin{center}
+\includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
+\end{center}
+\caption{Various grid configurations with the matrix sizes 150$^3$ and 170$^3$}
+\label{fig:01}