]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
petites modifs 5.4.2
[rce2015.git] / paper.tex
index 81afcf517c38d633ee85667120bd5421be900c69..24ddab9a5181b4cac5b4f9e5264ebaa158981912 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -442,8 +442,6 @@ In this section, experiments for both multisplitting algorithms are reported. Fi
 
 \subsection{The 3D Poisson problem}
 \label{3dpoisson}
-
-
 We use our two-stage algorithms to solve the well-known Poisson problem $\nabla^2\phi=f$~\cite{Polyanin01}. In three-dimensional Cartesian coordinates in $\mathbb{R}^3$, the problem takes the following form:
 \begin{equation}
 \frac{\partial^2}{\partial x^2}\phi(x,y,z)+\frac{\partial^2}{\partial y^2}\phi(x,y,z)+\frac{\partial^2}{\partial z^2}\phi(x,y,z)=f(x,y,z)\mbox{~in the domain~}\Omega
@@ -489,13 +487,7 @@ and on the other hand the execution time and the number of iterations to reach t
 simulated in the  simulator tool to run the program.  The following architectures
 have been configured in SimGrid : 2$\times$16, 4$\times$8, 4$\times$16, 8$\times$8 and 2$\times$50. The first number
 represents the number  of clusters in the grid and  the second number represents
-the number  of hosts (processors/cores)  in each  cluster. The network has been
-designed to  operate with a bandwidth  equals to 10Gbits (resp.  1Gbits/s) and a
-latency of 8.10$^{-6}$ seconds (resp.  5.10$^{-5}$) for the intra-clusters links
-(resp.  inter-clusters backbone links).  \\
-
-%\LZK{Il me semble que le bw et lat des deux réseaux varient dans les expés d'une simu à l'autre. On vire la dernière phrase?}
-%\RC{il me semble qu'on peut laisser ca}
+the number  of hosts (processors/cores)  in each  cluster. \\
 
 \textbf{Step 5}: Conduct an extensive and comprehensive testings
 within these configurations by varying the key parameters, especially
@@ -536,124 +528,113 @@ and  between distant  clusters.  This parameter is application dependent.
  a lower speed.  The network  between distant  clusters might  be a  bottleneck
  for  the global performance of the application.
 
-\subsection{Comparison of GMRES and Krylov two-stage algorithms in synchronous mode}
-
-In the scope  of this paper, our  first objective is to analyze  when the Krylov
-two-stage method has  better  performance  than   the  classical  GMRES method. With a synchronous  iterative method, better performance means a
-smaller number of iterations and execution time before reaching the convergence.
-In what follows, we will present the test conditions, the output results and our comments.
-
-%%RAPH : on vire ca, c'est pas clair et pas important
-%For a systematic study,  the experiments  should figure  out  that, for  various
-%grid  parameters values, the simulator will confirm Multisplitting method  better performance compared to classical GMRES, particularly on poor and slow networks.
-%\LZK{Pas du tout claire la dernière phrase (For a systematic...)!!}
-%\RCE { Reformule autrement}
 
+\subsection{Comparison between GMRES and two-stage multisplitting algorithms in synchronous mode}
+In the scope of this paper, our first objective is to analyze when the synchronous Krylov two-stage method has better performance than the classical GMRES method. With a synchronous iterative method, better performance means a smaller number of iterations and execution time before reaching the convergence.
 
-
-%\subsubsection{Execution of the algorithms on various computational grid architectures and scaling up the input matrix size}
-\subsubsection{Simulations for various grid architectures and scaling-up matrix sizes}
-\ \\
-% environment
-
-\RC{Je ne comprends plus rien CE : pourquoi dans 5.4.1 il y a 2 network et aussi dans 5.4.2. Quelle est la différence? Dans la figure 3 de la section 5.4.1 pourquoi il n'y a pas N1 et N2?}
+Table~\ref{tab:01} summarizes the parameters used in the different simulations: the grid architectures, the network of inter-clusters backbone links and the matrix sizes of the 3D Poisson problem. However, for all simulations we fix the network parameters of the intra-clusters links: the bandwidth $bw$=10Gbs and the latency $lat$=8$\times$10$^{-6}$. In what follows, we will present the test conditions, the output results and our comments. 
 
 \begin{table} [ht!]
 \begin{center}
-\begin{tabular}{ll }
- \hline
- Grid architecture & 2$\times$16, 4$\times$8, 4$\times$16 and 8$\times$8\\ %\hline
- \multirow{2}{*}{Network} & Inter (N2): $bw$=1Gbs, $lat$=5$\times$10$^{-5}$ \\ %\hline
-                          & Intra (N1): $bw$=10Gbs, $lat$=8$\times$10$^{-6}$ \\
- \multirow{2}{*}{Matrix size}  & N$_{x}$ $\times$ N$_{y}$ $\times$ N$_{z}$ =150 $\times$ 150 $\times$ 150\\ %\hline
-  &  N$_{x}$ $\times$ N$_{y}$ $\times$ N$_{z}$  =170 $\times$ 170 $\times$ 170    \\ \hline
- \end{tabular}
-\caption{Test conditions: various grid configurations with the matrix sizes 150$^3$ or 170$^3$}
-%\LZK{Ce sont les caractéristiques du réseau intra ou inter clusters? Ce n'est pas précisé...}
-%\RCE{oui c est precise}
+\begin{tabular}{ll}
+\hline
+Grid architecture                       & 2$\times$16, 4$\times$8, 4$\times$16 and 8$\times$8\\ 
+\multirow{2}{*}{Network inter-clusters} & $N1$: $bw$=10Gbs, $lat$=8$\times$10$^{-6}$ \\
+                                        & $N2$: $bw$=1Gbs, $lat$=5$\times$10$^{-5}$ \\ 
+\multirow{2}{*}{Matrix size}            & $Mat1$: N$_{x}\times$N$_{y}\times$N$_{z}$=150$\times$150$\times$150\\
+                                        & $Mat2$: N$_{x}\times$N$_{y}\times$N$_{z}$=170$\times$170$\times$170 \\ \hline
+\end{tabular}
+\caption{Parameters for the different simulations}
 \label{tab:01}
 \end{center}
 \end{table}
 
+\subsubsection{Simulations for various grid architectures and scaling-up matrix sizes\\}
 
 In  this  section,  we  analyze   the  simulations  conducted  on  various  grid
-configurations presented  in Table~\ref{tab:01}. It  should be noticed  that two
-networks are considered: N1 is  the network between clusters (inter-cluster) and
-N2 is the network inside  a cluster (intra-cluster).  Figure~\ref{fig:01} shows,
-for all  grid configurations  and a  given matrix size,  a non-variation  in the
-number of iterations for the classical GMRES algorithm, which is not the case of
-the Krylov two-stage algorithm.
-%% First,  the results in  Figure~\ref{fig:01}
-%% show for all grid configurations the non-variation of the number of iterations of
-%% classical  GMRES for  a given  input matrix  size; it is not  the case  for the
-%% multisplitting method.
-%\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
-%\RC{Les légendes ne sont pas explicites...}
-%\RCE{Corrige}
+configurations and for different sizes of the 3D Poisson problem. The parameters
+of    the    network    between    clusters    is    fixed    to    $N2$    (see
+Table~\ref{tab:01}). Figure~\ref{fig:01} shows, for all grid configurations and a
+given matrix size 170$^3$ elements, a  non-variation in the number of iterations
+for the classical GMRES algorithm, which is not the case of the Krylov two-stage
+algorithm. In fact, with multisplitting  algorithms, the number of splitting (in
+our case, it is the number of clusters) influences on the convergence speed. The
+higher the number  of splitting is, the slower the  convergence of the algorithm
+is (see the output results obtained from configurations 2$\times$16 vs. 4$\times$8 and configurations 4$\times$16 vs. 8$\times$8).
+
+The execution times between both algorithms is significant with different grid architectures. The synchronous Krylov two-stage algorithm presents better performances than the GMRES algorithm, even for a high number of clusters (about $32\%$ more efficient on a grid of 8$\times$8 than GMRES). In addition, we can observe a better sensitivity of the Krylov two-stage algorithm (compared to the GMRES one) when scaling up the number of the processors in the computational grid: the Krylov two-stage algorithm is about $48\%$ and the GMRES algorithm is about $40\%$ better on 64 processors (grid of 8$\times$8) than 32 processors (grid of 2$\times$16). 
+
+\begin{figure}[t]
+\begin{center}
+\includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
+\end{center}
+\caption{Various grid configurations with the matrix sizes 150$^3$ and 170$^3$}
+\LZK{CE, la légende de la Figure 3 est trop large. Remplacer les N$_x\times$N$_y\times$N$_z$ par $Mat1$=150$^3$ et $Mat2$=170$^3$ comme dans la Table 1}
+\label{fig:01}
+\end{figure}
 
-\begin{figure} [htbp]
-  \begin{center}
-    \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
-  \end{center}
-  \caption{Various grid configurations with the matrix sizes 150$^3$ and 170$^3$}
-%\AG{Utiliser le point comme séparateur décimal et non la virgule.  Idem dans les autres figures.}
-%\LZK{Pour quelle taille du problème sont calculés les nombres d'itérations? Que représente le 2 Clusters x 16 Nodes with Nx=150 and Nx=170 en haut de la figure?}
-  %\RCE {Corrige}
-    \RC{Idéalement dans la légende il faudrait insiquer Pb size=$150^3$ ou $170^3$  car pour l'instant Nx=150 ca n'indique rien concernant Ny et Nz}
-  \label{fig:01}
+\subsubsection{Simulations for two different inter-clusters network speeds\\}
+In  Figure~\ref{fig:02} we  present the  execution times  of both  algorithms to
+solve a  3D Poisson problem of  size $150^3$ on two  different simulated network
+$N1$ and $N2$ (see Table~\ref{tab:01}). As previously mentioned, we can see from
+this figure  that the Krylov two-stage  algorithm is sensitive to  the number of
+clusters (i.e. it is better to have a small number of clusters). However, we can
+notice an  interesting behavior of  the Krylov  two-stage algorithm. It  is less
+sensitive to bad network bandwidth and latency for the inter-clusters links than
+the  GMRES algorithms.  This  means  that the  multisplitting  methods are  more
+efficient for distributed systems with high latency networks.
+
+%% In this section, the experiments  compare the  behavior of  the algorithms  running on a
+%% speeder inter-cluster  network (N2) and  also on  a less performant  network (N1) respectively defined in the test conditions Table~\ref{tab:02}.
+%% %\RC{Il faut définir cela avant...}
+%% Figure~\ref{fig:02} shows that end users will reduce the execution time
+%% for  both  algorithms when using  a  grid  architecture  like  4 $\times$ 16 or  8 $\times$ 8: the reduction factor is around $2$. The results depict  also that when
+%% the  network speed  drops down (variation of 12.5\%), the  difference between  the two Multisplitting algorithms execution times can reach more than 25\%.
+
+\begin{figure}[t]
+\centering
+\includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
+\caption{Various grid configurations with networks $N1$ vs. $N2$}
+\LZK{CE, remplacer les ``,'' des décimales par un ``.''}
+\label{fig:02}
 \end{figure}
 
 
 
-The execution  times between  the two algorithms  is significant  with different
-grid architectures, even  with the same number of processors  (for example, 2 $\times$ 16
-and  4 $\times  8$). We  can  observe  a better  sensitivity  of  the Krylov multisplitting  method
-(compared with the classical GMRES) when scaling up the number of the processors
-in the  grid: in  average, the GMRES  (resp. Multisplitting)  algorithm performs
-$40\%$ better (resp. $48\%$) when running from 32 (grid 2 $\times$ 16) to 64 processors/cores (grid 8 $\times$ 8). Note that even with a grid 8 $\times$ 8 having the maximum number of clusters, the execution time of the multisplitting method is in average 32\% less compared to GMRES. 
-\RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?}
-\LZK{A revoir toute cette analyse... Le multi est plus performant que GMRES. Les temps d'exécution de multi sont sensibles au nombre de CLUSTERS. Il est moins performant pour un nombre grand de cluster. Avez vous d'autres remarques?}
-\RCE{Remarquez que meme avec une grille 8x8, le multi est toujours plus performant}
 
-\subsubsection{Simulations for two different inter-clusters network speeds \\}
 
-\begin{table} [ht!]
-\begin{center}
-\begin{tabular}{ll}
- \hline
- Grid architecture        & 2$\times$16, 4$\times$8\\ %\hline
- \multirow{2}{*}{Inter Network} & N1: $bw$=1Gbs, $lat$=5$\times$10$^{-5}$ \\ %\hline
-                          & N2: $bw$=10Gbs, $lat$=8$\times$10$^{-6}$ \\
- Matrix size              & $N_{x} \times N_{y} \times N_{z} =150 \times 150 \times 150$\\ \hline
- \end{tabular}
-\caption{Test conditions: grid configurations 2$\times$16 and 4$\times$8 with networks N1 vs. N2}
-\label{tab:02}
-\end{center}
-\end{table}
 
-In this section, the experiments  compare the  behavior of  the algorithms  running on a
-speeder inter-cluster  network (N2) and  also on  a less performant  network (N1) respectively defined in the test conditions Table~\ref{tab:02}.
-%\RC{Il faut définir cela avant...}
-Figure~\ref{fig:02} shows that end users will reduce the execution time
-for  both  algorithms when using  a  grid  architecture  like  4 $\times$ 16 or  8 $\times$ 8: the reduction factor is around $2$. The results depict  also that when
-the  network speed  drops down (variation of 12.5\%), the  difference between  the two Multisplitting algorithms execution times can reach more than 25\%.
 
 
 
-%\begin{wrapfigure}{l}{100mm}
-\begin{figure} [htbp]
-\centering
-\includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
-\caption{Various grid configurations with networks N1 vs N2}
-%\AG{\np{8E-6}, \np{5E-6} au lieu de 8E-6, 5E-6}}
-%\RCE{Corrige}
-\label{fig:02}
-\end{figure}
-%\end{wrapfigure}
 
 
-\subsubsection{Network latency impacts on performance}
-\ \\
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+\subsubsection{Network latency impacts on performance\\}
+
 \begin{table} [ht!]
 \centering
 \begin{tabular}{r c }
@@ -681,11 +662,11 @@ network  latency  from  $8.10^{-6}$  to $6.10^{-5}$  implies  an  absolute  time
 increase of more than $75\%$ (resp.   $82\%$) of the execution for the classical
 GMRES  (resp.   Krylov  multisplitting)  algorithm. The  execution  time  factor
 between the two algorithms  varies from 2.2 to 1.5 times  with a network latency
-decreasing from $8.10^{-6}$ to $6.10^{-5}$.
+decreasing from $8.10^{-6}$ to $6.10^{-5}$ second.
 
 
-\subsubsection{Network bandwidth impacts on performance}
-\ \\
+\subsubsection{Network bandwidth impacts on performance\\}
+
 \begin{table} [ht!]
 \centering
 \begin{tabular}{r c }
@@ -717,15 +698,15 @@ Figure~\ref{fig:04}). However,  in this  case, the Krylov  multisplitting method
 presents a better  performance in the considered bandwidth interval  with a gain
 of $40\%$ which is only around $24\%$ for the classical GMRES.
 
-\subsubsection{Input matrix size impacts on performance}
-\ \\
+\subsubsection{Input matrix size impacts on performance\\}
+
 \begin{table} [ht!]
 \centering
 \begin{tabular}{r c }
  \hline
  Grid Architecture & 4 $\times$ 8\\ %\hline
  Inter Network & $bw$=1Gbs - $lat$=5.10$^{-5}$ \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 40$^{3}$ to 200$^{3}$\\ \hline
+ Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 50$^{3}$ to 190$^{3}$\\ \hline
  \end{tabular}
 \caption{Test conditions: Input matrix size impacts}
 \label{tab:05}
@@ -739,27 +720,23 @@ of $40\%$ which is only around $24\%$ for the classical GMRES.
 \label{fig:05}
 \end{figure}
 
-In these experiments, the input matrix size  has been set from $N_{x} = N_{y}
-= N_{z} = 40$ to $200$ side elements  that is from $40^{3} = 64.000$ to $200^{3}
-= 8,000,000$  points. Obviously, as  shown in Figure~\ref{fig:05},  the execution
-time for  both algorithms increases when  the input matrix size  also increases.
-But the interesting results are:
-\begin{enumerate}
-  \item the important increase ($10$ times)  of the number of iterations needed to
-    reach the convergence for the classical GMRES algorithm particularly, when the matrix size
-    go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire}
-    \RCE{Le nombre d'iterations augmente de 10 fois, cela surtout a partir de N=150}
-    
-\item the  classical GMRES execution time  is almost the double  for $N_{x}=140$
-  compared with the Krylov multisplitting method.
-\end{enumerate}
+In  these  experiments, the  input  matrix  size has  been  set  from $50^3$  to
+$190^3$. Obviously, as shown in Figure~\ref{fig:05}, the execution time for both
+algorithms increases when the input matrix size also increases.  For all problem
+sizes, GMRES is always slower than the Krylov multisplitting. Moreover, for this
+benchmark, it seems that  the greater the problem size is,  the bigger the ratio
+between both  algorithm execution  times is.  We can also  observ that  for some
+problem   sizes,  the   Krylov   multisplitting  convergence   varies  quite   a
+lot. Consequently the execution times in that cases also varies.
+
 
 These  findings may  help a  lot end  users to  setup the  best and  the optimal
 targeted environment for the application deployment when focusing on the problem
 size scale up.  It  should be noticed that the same test has  been done with the
-grid 2 $\times$ 16 leading to the same conclusion.
+grid 4 $\times$ 8 leading to the same conclusion.
+
+\subsubsection{CPU Power impacts on performance\\}
 
-\subsubsection{CPU Power impacts on performance}
 
 \begin{table} [htbp]
 \centering