]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
pas mal de choses à éclaircir
[rce2015.git] / paper.tex
index 6ac52c3589a4c3ab5a4728198fc744993a168af2..af2303eed3c0d1804e0c448c6aad04306b7c4aba 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -614,15 +614,16 @@ the  network speed  drops down (variation of 12.5\%), the  difference between  t
 \end{figure}
 
 
 \end{figure}
 
 
-According to the results  of  Figure~\ref{fig:03}, a  degradation  of the  network
-latency from $8.10^{-6}$  to $6.10^{-5}$ implies an absolute  time increase of more
-than $75\%$  (resp. $82\%$) of the  execution for the classical  GMRES (resp. Krylov
-multisplitting)   algorithm.   In   addition,   it  appears   that  the   Krylov
-multisplitting method tolerates  more the network latency variation  with a less
-rate  increase  of  the  execution   time.   Consequently,  in  the  worst  case
-($lat=6.10^{-5 }$), the  execution time for GMRES is almost  the double than the
-time of the Krylov multisplitting, even  though, the performance was on the same
-order of magnitude with a latency of $8.10^{-6}$.
+According to  the results of  Figure~\ref{fig:03}, a degradation of  the network
+latency from  $8.10^{-6}$ to  $6.10^{-5}$ implies an  absolute time  increase of
+more  than $75\%$  (resp.  $82\%$)  of the  execution  for  the classical  GMRES
+(resp.  Krylov multisplitting)  algorithm.   In addition,  it  appears that  the
+Krylov multisplitting method tolerates more the network latency variation with a
+less  rate increase  of  the  execution time.\RC{Les  2  précédentes phrases  me
+  semblent en contradiction....}  Consequently, in the worst case ($lat=6.10^{-5
+}$), the  execution time for  GMRES is  almost the double  than the time  of the
+Krylov multisplitting,  even though, the  performance was  on the same  order of
+magnitude with a latency of $8.10^{-6}$.
 
 \subsubsection{Network bandwidth impacts on performance}
 \ \\
 
 \subsubsection{Network bandwidth impacts on performance}
 \ \\
@@ -634,7 +635,7 @@ order of magnitude with a latency of $8.10^{-6}$.
  Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
  Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\
  \end{tabular}
  Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
  Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\
  \end{tabular}
-\caption{Test conditions: Network bandwidth impacts}
+\caption{Test conditions: Network bandwidth impacts\RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}}
 \label{tab:04}
 \end{table}
 
 \label{tab:04}
 \end{table}
 
@@ -680,9 +681,9 @@ In these experiments, the input matrix size  has been set from $N_{x} = N_{y}
 time for  both algorithms increases when  the input matrix size  also increases.
 But the interesting results are:
 \begin{enumerate}
 time for  both algorithms increases when  the input matrix size  also increases.
 But the interesting results are:
 \begin{enumerate}
-  \item the drastic increase ($10$ times) \RC{Je ne vois pas cela sur la figure}
-\RCE{Corrige} of the  number of  iterations needed  to reach the  convergence for  the classical
-GMRES algorithm when  the matrix size go beyond $N_{x}=150$;
+  \item the drastic increase ($10$ times)  of the number of iterations needed to
+    reach the convergence for the classical GMRES algorithm when the matrix size
+    go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire}
 \item the  classical GMRES execution time  is almost the double  for $N_{x}=140$
   compared with the Krylov multisplitting method.
 \end{enumerate}
 \item the  classical GMRES execution time  is almost the double  for $N_{x}=140$
   compared with the Krylov multisplitting method.
 \end{enumerate}