tune their application for a given multi-core architecture. To show the validity
of this approach we first compare the simulated execution of the multisplitting
algorithm with the GMRES (Generalized Minimal Residual)
-solver~\cite{saad86} in synchronous mode. The obtained results on different
+solver~\cite{saad86} in synchronous mode.
+
+\LZK{Pas trop convainquant comme argument pour valider l'approche de simulation. \\On peut dire par exemple: on a pu simuler différents algos itératifs à large échelle (le plus connu GMRES et deux variantes de multisplitting) et la simulation nous a permis (sans avoir le vrai matériel) de déterminer quelle serait la meilleure solution pour une telle configuration de l'archi ou vice versa.\\A revoir...}
+
+The obtained results on different
simulated multi-core architectures confirm the real results previously obtained
-on non simulated architectures. We also confirm the efficiency of the
-asynchronous multisplitting algorithm compared to the synchronous GMRES. In
+on non simulated architectures.
+
+\LZK{Il n y a pas dans la partie expé cette comparaison et confirmation des résultats entre la simulation et l'exécution réelle des algos sur les vrais clusters.\\ Sinon on pourrait ajouter dans la partie expé une référence vers le journal supercomput de krylov multi pour confirmer que cette méthode est meilleure que GMRES sur les clusters large échelle.}
+
+We also confirm the efficiency of the
+asynchronous multisplitting algorithm compared to the synchronous GMRES.
+
+\LZK{P.S.: Pour tout le papier, le principal objectif n'est pas de faire des comparaisons entre des méthodes itératives!!\\Sinon, les deux algorithmes Krylov multisplitting synchrone et multisplitting asynchrone sont plus efficaces que GMRES sur des clusters à large échelle.\\Et préciser, si c'est vraiment le cas, que le multisplitting asynchrone est plus efficace et adapté aux clusters distants par rapport aux deux autres algos (je n'ai pas encore lu la partie expé)}
+
+In
this way and with a simple computing architecture (a laptop) SimGrid allows us
to run a test campaign of a real parallel iterative applications on
different simulated multi-core architectures. To our knowledge, there is no
experimental results are presented in section~\ref{sec:expe} followed by some
concluding remarks and perspectives.
+\LZK{Proposition d'un titre pour le papier: Grid-enabled simulation of large-scale linear iterative solvers.}
+
\section{The asynchronous iteration model and the motivations of our work}
\label{sec:asynchro}
A_{\ell\ell} x_\ell = c_\ell,\mbox{~for~}\ell=1,\ldots,L,
\label{eq:03}
\end{equation}
-where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES ({\it Generalized Minimal RESidual})~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}.
+where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES ({\it Generalized Minimal RESidual})~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}.
\begin{figure}[t]
%\begin{algorithm}[t]
\item maximum number of restarts for the Arnorldi process in GMRES method,
\item execution mode: synchronous or asynchronous.
\end{itemize}
-\LZK{CE pourrais tu vérifier et confirmer les valeurs des éléments diag et off-diag de la matrice?}
-\RCE{oui, les valeurs de diag et off-diag donnees sont ok}
It should also be noticed that both solvers have been executed with the Simgrid selector \texttt{-cfg=smpi/running\_power} which determines the computational power (here 19GFlops) of the simulator host machine.
In the scope of this paper, our first objective is to analyze when the Krylov
Multisplitting method has better performance than the classical GMRES
-method. With a synchronous iterative method, better performance mean a
+method. With a synchronous iterative method, better performance means a
smaller number of iterations and execution time before reaching the convergence.
For a systematic study, the experiments should figure out that, for various
grid parameters values, the simulator will confirm the targeted outcomes,
Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ %\hline
- & N$_{x}$ x N$_{y}$ x N$_{z}$ =170 x 170 x 170 \\ \hline
\end{tabular}
-\caption{Test conditions: Various grid configurations with the input matix size N$_{x}$=150 or N$_{x}$=170 \RC{je ne comprends pas la légende... Ca ne serait pas plutot Characteristics of cluster (mais il faudrait lui donner un nom)}}
+\caption{Test conditions: various grid configurations with the input matix size N$_{x}$=150 or N$_{x}$=170 \RC{N2 n'est pas défini..}\RC{Nx est défini, Ny? Nz?}}
\label{tab:01}
\end{center}
\end{table}
-%\RCE{J'ai voulu mettre les tableaux des données mais je pense que c'est inutile et ça va surcharger}
-
In this section, we analyze the performance of algorithms running on various
grid configurations (2x16, 4x8, 4x16 and 8x8). First, the results in Figure~\ref{fig:01}
\begin{center}
\includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
\end{center}
- \caption{Various grid configurations with the input matrix size N$_{x}$=150 and N$_{x}$=170}
+ \caption{Various grid configurations with the input matrix size N$_{x}$=150 and N$_{x}$=170\RC{idem}}
\label{fig:01}
\end{figure}
and 4x8). We can observ the low sensitivity of the Krylov multisplitting method
(compared with the classical GMRES) when scaling up the number of the processors
in the grid: in average, the GMRES (resp. Multisplitting) algorithm performs
-$40\%$ better (resp. $48\%$) when running from 2x16=32 to 8x8=64 processors.
+$40\%$ better (resp. $48\%$) when running from 2x16=32 to 8x8=64 processors. \RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?}
\subsubsection{Running on two different inter-clusters network speeds \\}
- & N2 : bw=1Gbs-lat=5.10$^{-5}$ \\
Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline
\end{tabular}
-\caption{Test conditions: Grid 2x16 and 4x8 - Networks N1 vs N2}
+\caption{Test conditions: grid 2x16 and 4x8 with networks N1 vs N2}
\label{tab:02}
\end{center}
\end{table}
These experiments compare the behavior of the algorithms running first on a
-speed inter-cluster network (N1) and also on a less performant network (N2).
-Figure~\ref{fig:02} shows that end users will gain to reduce the execution time
-for both algorithms in using a grid architecture like 4x16 or 8x8: the
-performance was increased by a factor of $2$. The results depict also that when
+speed inter-cluster network (N1) and also on a less performant network (N2). \RC{Il faut définir cela avant...}
+Figure~\ref{fig:02} shows that end users will reduce the execution time
+for both algorithms when using a grid architecture like 4x16 or 8x8: the reduction is about $2$. The results depict also that when
the network speed drops down (variation of 12.5\%), the difference between the two Multisplitting algorithms execution times can reach more than 25\%.
%\RC{c'est pas clair : la différence entre quoi et quoi?}
%\DL{pas clair}
\begin{figure} [ht!]
\centering
\includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
-\caption{Grid 2x16 and 4x8 - Networks N1 vs N2}
+\caption{Grid 2x16 and 4x8 with networks N1 vs N2}
\label{fig:02}
\end{figure}
%\end{wrapfigure}
Network & N1 : bw=1Gbs \\ %\hline
Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline
\end{tabular}
-\caption{Test conditions: Network latency impacts}
+\caption{Test conditions: network latency impacts}
\label{tab:03}
\end{table}