]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
RCE : Retenir les fichiers PDF a la place des JPEG
[rce2015.git] / paper.tex
index b7d5fef3b05c231e6e9c4b9fbc35c40cd0d65415..8583e51c0544644dcb0bcf2c30c10756e237bf0e 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -1,4 +1,3 @@
-%\documentclass[conference]{IEEEtran}
 \documentclass[times]{cpeauth}
 
 \usepackage{moreverb}
@@ -226,14 +225,14 @@ The results in figure 1 show the non-variation of the number of
 iterations of classical GMRES for a given input matrix size; it is not 
 the case for the multisplitting method. 
 
-%%\begin{wrapfigure}{l}{60mm}
+%\begin{wrapfigure}{l}{60mm}
 \begin{figure} [ht!]
 \centering
-\includegraphics[width=60mm]{Cluster x Nodes NX=150 and NX=170.jpg}
-\caption{Cluster x Nodes NX=150 and NX=170 \label{overflow}}
+\includegraphics[width=60mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
+\caption{Cluster x Nodes NX=150 and NX=170} 
+%\label{overflow}}
 \end{figure}
-%%\end{wrapfigure}
-
+%\end{wrapfigure}
 
 Unless the 8x8 cluster, the time 
 execution difference between the two algorithms is important when 
@@ -260,11 +259,14 @@ matrix size.
 %\RCE{idem pour tous les tableaux de donnees}
 
 
+%\begin{wrapfigure}{l}{60mm}
 \begin{figure} [ht!]
 \centering
-\includegraphics[width=60mm]{Cluster x Nodes N1 x N2.jpg}
-\caption{Cluster x Nodes N1 x N2\label{overflow}}
+\includegraphics[width=60mm]{cluster_x_nodes_n1_x_n2.pdf}
+\caption{Cluster x Nodes N1 x N2}
+%\label{overflow}}
 \end{figure}
+%\end{wrapfigure}
 
 The experiments compare the behavior of the algorithms running first on 
 speed inter- cluster network (N1) and a less performant network (N2). 
@@ -291,8 +293,9 @@ Table 3 : Network latency impact
 
 \begin{figure} [ht!]
 \centering
-\includegraphics[width=60mm]{Network latency impact on execution time.jpg}
-\caption{Network latency impact on execution time\label{overflow}}
+\includegraphics[width=60mm]{network_latency_impact_on_execution_time.pdf}
+\caption{Network latency impact on execution time}
+%\label{overflow}}
 \end{figure}
 
 
@@ -322,8 +325,9 @@ Table 4 : Network bandwidth impact
 
 \begin{figure} [ht!]
 \centering
-\includegraphics[width=60mm]{Network bandwith impact on execution time.jpg}
-\caption{Network bandwith impact on execution time\label{overflow}}
+\includegraphics[width=60mm]{network_bandwith_impact_on_execution_time.pdf}
+\caption{Network bandwith impact on execution time}
+%\label{overflow}
 \end{figure}
 
 
@@ -350,8 +354,9 @@ Table 5 : Input matrix size impact
 
 \begin{figure} [ht!]
 \centering
-\includegraphics[width=60mm]{Pb size impact on execution time.jpg}
-\caption{Pb size impact on execution time\label{overflow}}
+\includegraphics[width=60mm]{pb_size_impact_on_execution_time.pdf}
+\caption{Pb size impact on execution time}
+%\label{overflow}}
 \end{figure}
 
 In this experimentation, the input matrix size has been set from 
@@ -384,8 +389,9 @@ Table 6 : CPU Power impact
 
 \begin{figure} [ht!]
 \centering
-\includegraphics[width=60mm]{CPU Power impact on execution time.jpg}
-\caption{CPU Power impact on execution time\label{overflow}}
+\includegraphics[width=60mm]{cpu_power_impact_on_execution_time.pdf}
+\caption{CPU Power impact on execution time}
+%\label{overflow}}
 \end{figure}
 
 Using the SIMGRID simulator flexibility, we have tried to determine the