]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
petites modifs dans section 2
[rce2015.git] / paper.tex
index 3c38513a2d0f46ac1f1a4ae4dc21c157e9c4bdd5..6f1cc969f0d7227a9e318a22ffb60a70064c1fac 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 %\itshape{\journalnamelc}\footnotemark[2]}
 
 \author{Charles Emile Ramamonjisoa\affil{1},
-    David Laiymani\affil{1},
-    Arnaud Giersch\affil{1},
-    Lilia Ziane Khodja\affil{2} and
-    Raphaël Couturier\affil{1}
+  Lilia Ziane Khodja\affil{2},
+  David Laiymani\affil{1},
+  Raphaël Couturier\affil{1} and
+  Arnaud Giersch\affil{1}
 }
 
 \address{
 %% help developers to better tune their applications for a given multi-core
 %% architecture.
 
-%% In this paper we focus our attention on the simulation of iterative algorithms to solve sparse linear systems on large clusters. We study the behavior of the widely used GMRES algorithm and two different variants of the Multisplitting algorithms: one using synchronous iterations and another one with asynchronous iterations.  
+%% In this paper we focus our attention on the simulation of iterative algorithms to solve sparse linear systems on large clusters. We study the behavior of the widely used GMRES algorithm and two different variants of the Multisplitting algorithms: one using synchronous iterations and another one with asynchronous iterations.
 %% For each algorithm we have simulated
 %% different architecture parameters to evaluate their influence on the overall
-%% execution time. 
+%% execution time.
 %% The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the synchronous GMRES algorithm.
 
-The behavior of multi-core applications is always a challenge to predict, especially with a new architecture for which no experiment has been performed. With some applications, it is difficult, if not impossible, to build accurate performance models. That is why another solution is to use a simulation tool which allows us to change many parameters of the architecture (network bandwidth, latency, number of processors) and to simulate the execution of such applications. 
+The behavior of multi-core applications is always a challenge to predict, especially with a new architecture for which no experiment has been performed. With some applications, it is difficult, if not impossible, to build accurate performance models. That is why another solution is to use a simulation tool which allows us to change many parameters of the architecture (network bandwidth, latency, number of processors) and to simulate the execution of such applications.
 
 In this paper we focus on the simulation of iterative algorithms to solve sparse linear systems. We study the behavior of the GMRES algorithm and two different variants of the multisplitting algorithms: using synchronous or asynchronous iterations. For each algorithm we have simulated different architecture parameters to evaluate their influence on the overall execution time. The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous multisplitting algorithm on distant clusters compared to the GMRES algorithm.
 
@@ -154,7 +154,7 @@ iteration without having to wait for the data dependencies coming from its
 neighbors. Both communications and computations are \textit{asynchronous}
 inducing that there is no more idle time, due to synchronizations, between two
 iterations~\cite{bcvc06:ij}. This model presents some advantages and drawbacks
-that we detail in Section~\ref{sec:asynchro} but even if the number of
+that we detail in Section~\ref{sec:asynchro}. Even if the number of
 iterations required to converge is generally  greater  than for the synchronous
 case, it appears that the asynchronous  iterative scheme  can significantly
 reduce  overall execution times by  suppressing idle  times due to
@@ -181,7 +181,7 @@ multisplitting  algorithm   with  the   GMRES  (Generalized   Minimal  RESidual)
 solver~\cite{saad86} in  synchronous mode.  The simulation  results allow  us to
 determine  which method  to choose  for a given multi-core  architecture.
 Moreover the  obtained results  on different simulated  multi-core architectures
-confirm the  real results  previously obtained  on non  simulated architectures.
+confirm the  real results  previously obtained  on real physical architectures.
 More precisely the simulated results are in accordance (i.e. with the same order
 of magnitude)  with the works  presented in~\cite{couturier15}, which  show that
 the synchronous  Krylov multisplitting method  is more efficient  than GMRES  for large
@@ -209,7 +209,7 @@ concluding remarks and perspectives.
 Asynchronous iterative methods have been  studied for many years theoretically and
 practically. Many methods have been considered and convergence results have been
 proved. These  methods can  be used  to solve, in  parallel, fixed  point problems
-(i.e. problems  for which  the solution is  $x^\star =f(x^\star)$.  In practice,
+(i.e. problems  for which  the solution is  $x^\star =f(x^\star)$).  In practice,
 asynchronous iteration  methods can be used  to solve, for example,  linear and
 non-linear systems of equations or optimization problems, interested readers are
 invited to read~\cite{BT89,bahi07}.
@@ -219,8 +219,8 @@ studied. Otherwise, the  application is not ensure to reach  the convergence. An
 algorithm that supports both the synchronous or the asynchronous iteration model
 requires very few modifications  to be able to be executed  in both variants. In
 practice, only  the communications and  convergence detection are  different. In
-the synchronous  mode, iterations are  synchronized whereas in  the asynchronous
-one, they are not.  It should be noticed that non-blocking communications can be
+the synchronous  mode iterations are  synchronized, whereas in  the asynchronous
+one they are not.  It should be noticed that non-blocking communications can be
 used in both  modes. Concerning the convergence  detection, synchronous variants
 can use  a global convergence procedure  which acts as a  global synchronization
 point. In the  asynchronous model, the convergence detection is  more tricky as
@@ -239,65 +239,126 @@ optimize since the financial and deployment costs on large scale multi-core
 architectures are often very important. So, prior to deployment and tests it
 seems very promising to be able to simulate the behavior of asynchronous
 iterative algorithms. The problematic is then to show that the results produced
-by simulation are in accordance with reality i.e. of the same order of
-magnitude. To our knowledge, there is no study on this problematic.
+by simulation are in accordance with reality (i.e. of the same order of
+magnitude). To our knowledge, there is no study on this problematic.
 
 \section{SimGrid}
 \label{sec:simgrid}
-SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} is a discrete event simulation framework to study the behavior of large-scale distributed computing platforms as Grids, Peer-to-Peer systems, Clouds and High Performance Computation systems. It is widely used to simulate and evaluate heuristics, prototype applications or even assess legacy MPI applications. It is still actively developed by the scientific community and distributed as an open source software.
+In the scope of this paper, we have chosen the SimGrid toolkit~\cite{SimGrid,casanova+giersch+legrand+al.2014.versatile} to simulate the behavior of parallel iterative linear solvers on different computational grid configurations. In opposite to the most simulators which are stayed very oriented-application, SimGrid framework is designed to study the behavior of many large-scale distributed computing platforms as Grids, Peer-to-Peer systems, Clouds or High Performance Computation systems. It is still actively developed by the scientific community and distributed as an open source software.
 
-%%%%%%%%%%%%%%%%%%%%%%%%%
-% SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile}
-% is a simulation framework to study the behavior of large-scale distributed
-% systems.  As its name suggests, it emanates from the grid computing community,
-% but is nowadays used to study grids, clouds, HPC or peer-to-peer systems.  The
-% early versions of SimGrid date back from 1999, but it is still actively
-% developed and distributed as an open source software.  Today, it is one of the
-% major generic tools in the field of simulation for large-scale distributed
-% systems.
-
-SimGrid provides several programming interfaces: MSG to simulate Concurrent
-Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to
-run real applications written in MPI~\cite{MPI}.  Apart from the native C
-interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming
-languages.  SMPI is the interface that has been used for the work described in
-this paper.  The SMPI interface implements about \np[\%]{80} of the MPI 2.0
-standard~\cite{bedaride+degomme+genaud+al.2013.toward}, and supports
-applications written in C or Fortran, with little or no modifications (cf Section IV - paragraph B).
-
-Within SimGrid, the execution of a distributed application is simulated by a
-single process.  The application code is really executed, but some operations,
-like communications, are intercepted, and their running time is computed
-according to the characteristics of the simulated execution platform.  The
-description of this target platform is given as an input for the execution, by
-means of an XML file.  It describes the properties of the platform, such as
-the computing nodes with their computing power, the interconnection links with
-their bandwidth and latency, and the routing strategy.  The scheduling of the
-simulated processes, as well as the simulated running time of the application
-are computed according to these properties.
-
-To compute the durations of the operations in the simulated world, and to take
-into account resource sharing (e.g. bandwidth sharing between competing
-communications), SimGrid uses a fluid model.  This allows users to run relatively fast
-simulations, while still keeping accurate
-results~\cite{bedaride+degomme+genaud+al.2013.toward,
-  velho+schnorr+casanova+al.2013.validity}.  Moreover, depending on the
-simulated application, SimGrid/SMPI allows to skip long lasting computations and
-to only take their duration into account.  When the real computations cannot be
-skipped, but the results are unimportant for the simulation results, it is
-also possible to share dynamically allocated data structures between
-several simulated processes, and thus to reduce the whole memory consumption.
-These two techniques can help to run simulations on a very large scale.
-
-The validity of simulations with SimGrid has been asserted by several studies.
-See, for example, \cite{velho+schnorr+casanova+al.2013.validity} and articles
-referenced therein for the validity of the network models.  Comparisons between
-real execution of MPI applications on the one hand, and their simulation with
-SMPI on the other hand, are presented in~\cite{guermouche+renard.2010.first,
-  clauss+stillwell+genaud+al.2011.single,
-  bedaride+degomme+genaud+al.2013.toward}.  All these works conclude that
-SimGrid is able to simulate pretty accurately the real behavior of the
-applications.
+SimGrid provides four user interfaces which can be convenient for different distributed applications~\cite{casanova+legrand+quinson.2008.simgrid}. In this paper we are interested on the SMPI user interface (Simulator MPI) which implements about \np[\%]{80} of the MPI 2.0 standard and allows minor modifications of the initial code~\cite{bedaride+degomme+genaud+al.2013.toward} (see Section~\ref{sec:04.02}). SMPI enables the direct simulation of the execution, as in the real life, of an unmodified MPI distributed application, and gets accurate results with the detailed resources consumption.
+
+SimGrid simulator uses at least three XML input files describing the computational grid resources: the number of clusters in the grid, the number of processors/cores in each cluster, the detailed description of the intra and inter networks and the list of the hosts in each cluster (see the details in Section~\ref{sec:expe}). SimGrid uses a fluid model to simulate the program execution. It allows several simulation modes which produce accurate results~\cite{bedaride+degomme+genaud+al.2013.toward,velho+schnorr+casanova+al.2013.validity}. For instance, the "in vivo" mode really executes the computation but "intercepts" the communications (the execution time is then evaluated according to the parameters of the simulated platform). It is also possible for SimGrid/SMPI to only keep the duration of large computations by skipping them. Moreover the application can be run "in vitro" mode by sharing some in-memory structures between the simulated processes and thus allowing the use of very large-scale data.
+
+The choice of SimGrid/SMPI as a simulator tool in this study has been emphasized by the results obtained by several studies to validate, in the real environments, the behavior of different network models simulated in SimGrid~\cite{velho+schnorr+casanova+al.2013.validity}. Other studies underline the comparison between the real MPI application executions and the SimGrid/SMPI ones~\cite{guermouche+renard.2010.first,clauss+stillwell+genaud+al.2011.single,bedaride+degomme+genaud+al.2013.toward}. These works show the accuracy of SimGrid simulations compared to the executions on real physical architectures.
+
+
+
+
+
+
+
+
+
+
+
+
+
+%% In the scope of this paper, the SimGrid toolkit~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile},
+%% an open source framework actively developed by its scientific community, has been chosen to simulate the behavior of iterative linear solvers in different computational grid configurations. SimGrid pretends to be non-specialized in opposite to some other simulators which stayed to be very specific oriented-application. One of the well-known SimGrid advantage is its SMPI (Simulated MPI) user interface. SMPI purpose is to execute by simulation in a similar way as in real life, an MPI distributed application and to get accurate results with the detailed resources
+%% consumption.Several studies have demonstrated the accuracy of the simulation
+%% compared with execution on real physical architectures. In addition of SMPI,
+%% Simgrid provides other API which can be convienent for different distrbuted
+%% applications: computational grid applications, High Performance Computing (HPC),
+%% P2P but also clouds applications. In this paper we use the SMPI API. It
+%% implements about \np[\%]{80} of the MPI 2.0 standard and allows minor
+%% modifications of the initial code~\cite{bedaride+degomme+genaud+al.2013.toward}
+%% (see Section~\ref{sec:04.02}).
+
+
+%%  Provided as an input to the simulator, at least $3$ XML files describe the
+%%  computational grid resources: number of clusters in the grid, number of
+%%  processors/cores in each cluster, detailed description of the intra and inter
+%%  networks and the list of the hosts in each cluster (see the details in Section~\ref{sec:expe}). Simgrid uses a fluid model to simulate the program execution.
+%%  This gives several simulation modes which produce accurate
+%%  results~\cite{bedaride+degomme+genaud+al.2013.toward,
+%%  velho+schnorr+casanova+al.2013.validity}. For instance, the "in vivo" mode
+%%  really executes the computation but "intercepts" the communications (running
+%%  time is then evaluated according to the parameters of the simulated platform).
+%%  It is also possible for SimGrid/SMPI to only keep duration of large
+%%  computations by skipping them. Moreover the application can be run "in vitro"
+%%  by sharing some in-memory structures between the simulated processes and
+%%  thus allowing the use of very large data scale.
+
+
+%% The choice of Simgrid/SMPI as a simulator tool in this study has been emphasized
+%% by the results obtained by several studies to validate, in real environments,
+%% the behavior of different network models simulated in
+%% Simgrid~\cite{velho+schnorr+casanova+al.2013.validity}. Other studies underline
+%% the comparison between real MPI executions  and SimGrid/SMPI
+%% ones\cite{guermouche+renard.2010.first, clauss+stillwell+genaud+al.2011.single,
+%% bedaride+degomme+genaud+al.2013.toward}. These works show the accuracy of
+%% SimGrid simulations.
+
+
+
+
+
+
+% SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} is a discrete event simulation framework to study the behavior of large-scale distributed computing platforms as Grids, Peer-to-Peer systems, Clouds and High Performance Computation systems. It is widely used to simulate and evaluate heuristics, prototype applications or even assess legacy MPI applications. It is still actively developed by the scientific community and distributed as an open source software.
+%
+% %%%%%%%%%%%%%%%%%%%%%%%%%
+% % SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile}
+% % is a simulation framework to study the behavior of large-scale distributed
+% % systems.  As its name suggests, it emanates from the grid computing community,
+% % but is nowadays used to study grids, clouds, HPC or peer-to-peer systems.  The
+% % early versions of SimGrid date back from 1999, but it is still actively
+% % developed and distributed as an open source software.  Today, it is one of the
+% % major generic tools in the field of simulation for large-scale distributed
+% % systems.
+%
+% SimGrid provides several programming interfaces: MSG to simulate Concurrent
+% Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to
+% run real applications written in MPI~\cite{MPI}.  Apart from the native C
+% interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming
+% languages.  SMPI is the interface that has been used for the work described in
+% this paper.  The SMPI interface implements about \np[\%]{80} of the MPI 2.0
+% standard~\cite{bedaride+degomme+genaud+al.2013.toward}, and supports
+% applications written in C or Fortran, with little or no modifications (cf Section IV - paragraph B).
+%
+% Within SimGrid, the execution of a distributed application is simulated by a
+% single process.  The application code is really executed, but some operations,
+% like communications, are intercepted, and their running time is computed
+% according to the characteristics of the simulated execution platform.  The
+% description of this target platform is given as an input for the execution, by
+% means of an XML file.  It describes the properties of the platform, such as
+% the computing nodes with their computing power, the interconnection links with
+% their bandwidth and latency, and the routing strategy.  The scheduling of the
+% simulated processes, as well as the simulated running time of the application
+% are computed according to these properties.
+%
+% To compute the durations of the operations in the simulated world, and to take
+% into account resource sharing (e.g. bandwidth sharing between competing
+% communications), SimGrid uses a fluid model.  This allows users to run relatively fast
+% simulations, while still keeping accurate
+% results~\cite{bedaride+degomme+genaud+al.2013.toward,
+%   velho+schnorr+casanova+al.2013.validity}.  Moreover, depending on the
+% simulated application, SimGrid/SMPI allows to skip long lasting computations and
+% to only take their duration into account.  When the real computations cannot be
+% skipped, but the results are unimportant for the simulation results, it is
+% also possible to share dynamically allocated data structures between
+% several simulated processes, and thus to reduce the whole memory consumption.
+% These two techniques can help to run simulations on a very large scale.
+%
+% The validity of simulations with SimGrid has been asserted by several studies.
+% See, for example, \cite{velho+schnorr+casanova+al.2013.validity} and articles
+% referenced therein for the validity of the network models.  Comparisons between
+% real execution of MPI applications on the one hand, and their simulation with
+% SMPI on the other hand, are presented in~\cite{guermouche+renard.2010.first,
+%   clauss+stillwell+genaud+al.2011.single,
+%   bedaride+degomme+genaud+al.2013.toward}.  All these works conclude that
+% SimGrid is able to simulate pretty accurately the real behavior of the
+% applications.
 %%%%%%%%%%%%%%%%%%%%%%%%%
 
 \section{Two-stage multisplitting methods}
@@ -460,7 +521,13 @@ where the real-valued function $\phi(x,y,z)$ is the solution sought, $f(x,y,z)$
 \end{equation}
 until convergence where $h$ is the grid spacing between two adjacent elements in the 3D computational grid.
 
-In the parallel context, the 3D Poisson problem is partitioned into $L\times p$ sub-problems such that $L$ is the number of clusters and $p$ is the number of processors in each cluster. We apply the three-dimensional partitioning instead of the row-by-row one in order to reduce the size of the data shared at the sub-problems boundaries. In this case, each processor is in charge of parallelepipedic block of the problem and has at most six neighbors in the same cluster or in distant clusters with which it shares data at boundaries.
+In the parallel context, the 3D Poisson problem is partitioned into $L\times p$
+sub-problems such that $L$ is the number of clusters and $p$ is the number of
+processors in each cluster. We apply the three-dimensional partitioning instead
+of the row-by-row one in order to reduce the size of the data shared at the
+sub-problems boundaries. In this case, each processor is in charge of
+parallelepipedic block of the problem and has at most six neighbors in the same
+cluster or in distant clusters with which it shares data at boundaries.
 
 \subsection{Study setup and simulation methodology}
 
@@ -518,29 +585,40 @@ the program output results:
 Upon  the   network  characteristics,  another  impacting   factor  is  the volume of data exchanged  between the nodes in the cluster
 and  between distant  clusters.  This parameter is application dependent.
 
- In  a grid  environment, it  is common  to distinguish,  on the  one hand,  the
- "intra-network" which refers  to the links between nodes within  a cluster and
- on  the other  hand, the  "inter-network" which  is the  backbone link  between
- clusters.  In   practice,  these  two   networks  have  different   speeds.
- The intra-network  generally works  like a  high speed  local network  with a
- high bandwidth and very low latency. In opposite, the inter-network connects
- clusters sometime via  heterogeneous networks components  through internet with
- a lower speed.  The network  between distant  clusters might  be a  bottleneck
- for  the global performance of the application.
-
-
-\subsection{Comparison between GMRES and two-stage multisplitting algorithms in synchronous mode}
-In the scope of this paper, our first objective is to analyze when the synchronous Krylov two-stage method has better performance than the classical GMRES method. With a synchronous iterative method, better performance means a smaller number of iterations and execution time before reaching the convergence.
-
-Table~\ref{tab:01} summarizes the parameters used in the different simulations: the grid architectures, the network of inter-clusters backbone links and the matrix sizes of the 3D Poisson problem. However, for all simulations we fix the network parameters of the intra-clusters links: the bandwidth $bw$=10Gbs and the latency $lat$=8$\times$10$^{-6}$. In what follows, we will present the test conditions, the output results and our comments. 
+ In  a grid  environment, it  is common  to distinguish,  on one hand,  the
+ \textit{intra-network} which refers  to the links between nodes within  a
+ cluster and on  the other  hand, the  \textit{inter-network} which  is the
+ backbone link  between clusters.  In   practice,  these  two   networks  have
+ different   speeds. The intra-network  generally works  like a  high speed
+ local network  with a high bandwidth and very low latency. In opposite, the
+ inter-network connects clusters sometime via  heterogeneous networks components
+ through internet with a lower speed.  The network  between distant  clusters
+ might  be a  bottleneck for  the global performance of the application.
+
+
+\subsection{Comparison between GMRES and two-stage multisplitting algorithms in
+synchronous mode}
+In the scope of this paper, our first objective is to analyze
+when the synchronous Krylov two-stage method has better performance than the
+classical GMRES method. With a synchronous iterative method, better performance
+means a smaller number of iterations and execution time before reaching the
+convergence.
+
+Table~\ref{tab:01} summarizes the parameters used in the different simulations:
+the grid architectures (i.e. the number of clusters and the number of nodes per
+cluster), the network of inter-clusters backbone links and the matrix sizes of
+the 3D Poisson problem. However, for all simulations we fix the network
+parameters of the intra-clusters links: the bandwidth $bw$=10Gbs and the latency
+$lat=8\mu$s. In what follows, we will present the test conditions, the output
+results and our comments.
 
 \begin{table} [ht!]
 \begin{center}
 \begin{tabular}{ll}
 \hline
-Grid architecture                       & 2$\times$16, 4$\times$8, 4$\times$16 and 8$\times$8\\ 
-\multirow{2}{*}{Network inter-clusters} & $N1$: $bw$=10Gbs, $lat$=8$\times$10$^{-6}$ \\
-                                        & $N2$: $bw$=1Gbs, $lat$=5$\times$10$^{-5}$ \\ 
+Grid architecture                       & 2$\times$16, 4$\times$8, 4$\times$16 and 8$\times$8\\
+\multirow{2}{*}{Network inter-clusters} & $N1$: $bw$=10Gbs, $lat=8\mu$s \\
+                                        & $N2$: $bw$=1Gbs, $lat=50\mu$s \\
 \multirow{2}{*}{Matrix size}            & $Mat1$: N$_{x}\times$N$_{y}\times$N$_{z}$=150$\times$150$\times$150\\
                                         & $Mat2$: N$_{x}\times$N$_{y}\times$N$_{z}$=170$\times$170$\times$170 \\ \hline
 \end{tabular}
@@ -549,209 +627,136 @@ Grid architecture                       & 2$\times$16, 4$\times$8, 4$\times$16 a
 \end{center}
 \end{table}
 
-\subsubsection{Simulations for various grid architectures and scaling-up matrix sizes}
+\subsubsection{Simulations for various grid architectures and scaling-up matrix sizes\\}
 
 In  this  section,  we  analyze   the  simulations  conducted  on  various  grid
 configurations and for different sizes of the 3D Poisson problem. The parameters
 of    the    network    between    clusters    is    fixed    to    $N2$    (see
-Table~\ref{tab:01}). Figure~\ref{fig:01} shows, for all grid configurations and a
-given matrix size 170$^3$ elements, a  non-variation in the number of iterations
-for the classical GMRES algorithm, which is not the case of the Krylov two-stage
-algorithm. In fact, with multisplitting  algorithms, the number of splitting (in
-our case, it is the number of clusters) influences on the convergence speed. The
-higher the number  of splitting is, the slower the  convergence of the algorithm
-is (see the output results obtained from configurations 2$\times$16 vs. 4$\times$8 and configurations 4$\times$16 vs. 8$\times$8).
-
-The execution times between both algorithms is significant with different grid architectures. The synchronous Krylov two-stage algorithm presents better performances than the GMRES algorithm, even for a high number of clusters (about $32\%$ more efficient on a grid of 8$\times$8 than GMRES). In addition, we can observe a better sensitivity of the Krylov two-stage algorithm (compared to the GMRES one) when scaling up the number of the processors in the computational grid: the Krylov two-stage algorithm is about $48\%$ and the GMRES algorithm is about $40\%$ better on 64 processors (grid of 8$\times$8) than 32 processors (grid of 2$\times$16). 
-
-\begin{figure}[t]
+Table~\ref{tab:01}). Figure~\ref{fig:01} shows, for all grid configurations and
+a given matrix size of 170$^3$ elements, a  non-variation in the number of
+iterations for the classical GMRES algorithm, which is not the case of the
+Krylov two-stage algorithm. In fact, with multisplitting  algorithms, the number
+of splitting (in our case, it is equal to the number of clusters) influences on the
+convergence speed. The higher the number  of splitting is, the slower the
+convergence of the algorithm is (see the output results obtained from
+configurations 2$\times$16 vs. 4$\times$8 and configurations 4$\times$16 vs.
+8$\times$8).
+
+The execution times between both algorithms is significant with different grid
+architectures. The synchronous Krylov two-stage algorithm presents better
+performances than the GMRES algorithm, even for a high number of clusters (about
+$32\%$ more efficient on a grid of 8$\times$8 than GMRES). In addition, we can
+observe a better sensitivity of the Krylov two-stage algorithm (compared to the
+GMRES one) when scaling up the number of the processors in the computational
+grid: the Krylov two-stage algorithm is about $48\%$ and the GMRES algorithm is
+about $40\%$ better on $64$ processors (grid of 8$\times$8) than $32$ processors
+(grid of 2$\times$16).
+
+\begin{figure}[ht]
 \begin{center}
 \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
 \end{center}
-\caption{Various grid configurations with the matrix sizes 150$^3$ and 170$^3$}
+\caption{Various grid configurations with two matrix sizes: $150^3$ and $170^3$}
 \label{fig:01}
 \end{figure}
 
-\subsubsection{Simulations for two different inter-clusters network speeds \\}
-
-In this section, the experiments  compare the  behavior of  the algorithms  running on a
-speeder inter-cluster  network (N2) and  also on  a less performant  network (N1) respectively defined in the test conditions Table~\ref{tab:02}.
-%\RC{Il faut définir cela avant...}
-Figure~\ref{fig:02} shows that end users will reduce the execution time
-for  both  algorithms when using  a  grid  architecture  like  4 $\times$ 16 or  8 $\times$ 8: the reduction factor is around $2$. The results depict  also that when
-the  network speed  drops down (variation of 12.5\%), the  difference between  the two Multisplitting algorithms execution times can reach more than 25\%.
-
-\begin{figure}[t]
+\subsubsection{Simulations for two different inter-clusters network speeds\\}
+In  Figure~\ref{fig:02} we  present the  execution times  of both  algorithms to
+solve a  3D Poisson problem of  size $150^3$ on two  different simulated network
+$N1$ and $N2$ (see Table~\ref{tab:01}). As previously mentioned, we can see from
+this figure  that the Krylov two-stage  algorithm is sensitive to  the number of
+clusters (i.e. it is better to have a small number of clusters). However, we can
+notice an  interesting behavior of  the Krylov  two-stage algorithm. It  is less
+sensitive to bad network bandwidth and latency for the inter-clusters links than
+the  GMRES algorithms.  This  means  that the  multisplitting  methods are  more
+efficient for distributed systems with high latency networks.
+
+\begin{figure}[ht]
 \centering
 \includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
-\caption{Various grid configurations with networks $N1$ vs. $N2$}
+\caption{Various grid configurations with two networks parameters: $N1$ vs. $N2$}
+%\LZK{CE, remplacer les ``,'' des décimales par un ``.''}
+%\RCE{ok}
 \label{fig:02}
 \end{figure}
 
+\subsubsection{Network latency impacts on performances\\}
+Figure~\ref{fig:03} shows the impact of the network latency on the performances of both algorithms. The simulation is conducted on a computational grid of 2 clusters of 16 processors each (i.e. configuration 2$\times$16) interconnected by a network of bandwidth $bw$=1Gbs to solve a 3D Poisson problem of size $150^3$. According to the results, a degradation of the network latency from $8\mu$s to $60\mu$s implies an absolute execution time increase for both algorithms, but not with the same rate of degradation. The GMRES algorithm is more sensitive to the latency degradation than the Krylov two-stage algorithm.
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-\subsubsection{Network latency impacts on performance}
-
-\begin{table} [ht!]
-\centering
-\begin{tabular}{r c }
- \hline
- Grid Architecture & 2 $\times$ 16\\ %\hline
- \multirow{2}{*}{Inter Network N1} & $bw$=1Gbs, \\ %\hline
-                          & $lat$= From 8$\times$10$^{-6}$ to  $6.10^{-5}$ second \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z} = 150 \times 150 \times 150$\\ \hline
- \end{tabular}
-\caption{Test conditions: network latency impacts}
-\label{tab:03}
-\end{table}
-
-\begin{figure} [htbp]
+\begin{figure}[ht]
 \centering
 \includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
-\caption{Network latency impacts on execution time}
-%\AG{\np{E-6}}}
+\caption{Network latency impacts on performances}
 \label{fig:03}
 \end{figure}
 
-In Table~\ref{tab:03}, parameters  for the influence of the  network latency are
-reported.  According to the results of Figure~\ref{fig:03}, a degradation of the
-network  latency  from  $8.10^{-6}$  to $6.10^{-5}$  implies  an  absolute  time
-increase of more than $75\%$ (resp.   $82\%$) of the execution for the classical
-GMRES  (resp.   Krylov  multisplitting)  algorithm. The  execution  time  factor
-between the two algorithms  varies from 2.2 to 1.5 times  with a network latency
-decreasing from $8.10^{-6}$ to $6.10^{-5}$ second.
-
+\subsubsection{Network bandwidth impacts on performances\\}
 
-\subsubsection{Network bandwidth impacts on performance}
+Figure~\ref{fig:04} reports the results obtained for the simulation of a grid of
+$2\times16$ processors interconnected by a network of latency $lat=50\mu$s to
+solve a 3D Poisson problem of size $150^3$. The results of increasing the
+network bandwidth from $1$Gbs to $10$Gbs show the performances improvement for
+both algorithms by reducing the execution times. However, the Krylov two-stage
+algorithm presents a better performance gain in the considered bandwidth
+interval with a gain of $40\%$ compared to only about $24\%$ for the classical
+GMRES algorithm.
 
-\begin{table} [ht!]
-\centering
-\begin{tabular}{r c }
- \hline
- Grid Architecture & 2 $\times$ 16\\ %\hline
-\multirow{2}{*}{Inter Network N1} & $bw$=From 1Gbs to 10 Gbs \\ %\hline
-                          & $lat$= 5.10$^{-5}$ second \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z} =150 \times 150 \times 150$\\ \hline \\
- \end{tabular}
-\caption{Test conditions: Network bandwidth impacts}
-%  \RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}
-%\RCE{C est le bw}
-\label{tab:04}
-\end{table}
-
-
-\begin{figure} [htbp]
+\begin{figure}[ht]
 \centering
 \includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
-\caption{Network bandwith impacts on execution time}
-%\AG{``Execution time'' avec un 't' minuscule}. Idem autres figures.}
-%\RCE{Corrige}
+\caption{Network bandwith impacts on performances}
 \label{fig:04}
 \end{figure}
 
-The results  of increasing  the network  bandwidth show  the improvement  of the
-performance  for   both  algorithms   by  reducing   the  execution   time  (see
-Figure~\ref{fig:04}). However,  in this  case, the Krylov  multisplitting method
-presents a better  performance in the considered bandwidth interval  with a gain
-of $40\%$ which is only around $24\%$ for the classical GMRES.
-
-\subsubsection{Input matrix size impacts on performance}
-
-\begin{table} [ht!]
-\centering
-\begin{tabular}{r c }
- \hline
- Grid Architecture & 4 $\times$ 8\\ %\hline
- Inter Network & $bw$=1Gbs - $lat$=5.10$^{-5}$ \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 50$^{3}$ to 190$^{3}$\\ \hline
- \end{tabular}
-\caption{Test conditions: Input matrix size impacts}
-\label{tab:05}
-\end{table}
-
-
-\begin{figure} [htbp]
+\subsubsection{Matrix size impacts on performances\\}
+
+In these experiments, the matrix size of the 3D Poisson problem is varied from
+$50^3$ to $190^3$ elements. The simulated computational grid is composed of $4$
+clusters of $8$ processors each interconnected by the network $N2$ (see
+Table~\ref{tab:01}). As shown in Figure~\ref{fig:05}, the execution
+times for both algorithms increase with increased matrix sizes.  For all problem
+sizes, the GMRES algorithm is always slower than the Krylov two-stage algorithm.
+Moreover, for this benchmark, it seems that the greater the problem size is, the
+bigger the ratio between execution times of both algorithms is. We can also
+observe that for some problem sizes, the convergence (and thus the execution
+time) of the Krylov two-stage algorithm varies quite a lot.
+%This is due to the 3D partitioning of the 3D matrix of the Poisson problem.
+These findings may help a lot end users to setup the best and the optimal targeted environment for the application deployment when focusing on the problem size scale up.
+
+\begin{figure}[ht]
 \centering
 \includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
-\caption{Problem size impacts on execution time}
+\caption{Problem size impacts on performances}
 \label{fig:05}
 \end{figure}
 
-In  these  experiments, the  input  matrix  size has  been  set  from $50^3$  to
-$190^3$. Obviously, as shown in Figure~\ref{fig:05}, the execution time for both
-algorithms increases when the input matrix size also increases.  For all problem
-sizes, GMRES is always slower than the Krylov multisplitting. Moreover, for this
-benchmark, it seems that  the greater the problem size is,  the bigger the ratio
-between both  algorithm execution  times is.  We can also  observ that  for some
-problem   sizes,  the   Krylov   multisplitting  convergence   varies  quite   a
-lot. Consequently the execution times in that cases also varies.
-
-
-These  findings may  help a  lot end  users to  setup the  best and  the optimal
-targeted environment for the application deployment when focusing on the problem
-size scale up.  It  should be noticed that the same test has  been done with the
-grid 4 $\times$ 8 leading to the same conclusion.
-
-\subsubsection{CPU Power impacts on performance\\}
+\subsubsection{CPU power impacts on performances\\}
 
+Using the SimGrid simulator flexibility, we have tried to determine the impact
+of the CPU power of the processors in the different clusters on performances of
+both algorithms. We have varied the CPU power from $1$GFlops to $19$GFlops. The
+simulation is conducted on a grid of $2\times16$ processors interconnected by
+the network $N2$ (see Table~\ref{tab:01}) to solve a 3D Poisson problem of size
+$150^3$. The results depicted in Figure~\ref{fig:06} confirm the performance
+gain, about $95\%$ for both algorithms, after improving the CPU power of
+processors.
 
-\begin{table} [htbp]
-\centering
-\begin{tabular}{r c }
- \hline
- Grid architecture & 2 $\times$ 16\\ %\hline
- Inter Network & N2 : $bw$=1Gbs - $lat$=5.10$^{-5}$ \\ %\hline
- Input matrix size & $N_{x} = 150 \times 150 \times 150$\\ 
- CPU Power & From 3 to 19 GFlops \\ \hline
- \end{tabular}
-\caption{Test conditions: CPU Power impacts}
-\label{tab:06}
-\end{table}
-
-\begin{figure} [ht!]
+\begin{figure}[ht]
 \centering
 \includegraphics[width=100mm]{cpu_power_impact_on_execution_time.pdf}
-\caption{CPU Power impacts on execution time}
+\caption{CPU Power impacts on performances}
 \label{fig:06}
 \end{figure}
-
-Using the Simgrid  simulator flexibility, we have tried to  determine the impact
-on the  algorithms performance in  varying the CPU  power of the  clusters nodes
-from $1$ to $19$ GFlops.  The outputs  depicted in Figure~\ref{fig:06}  confirm the
-performance gain,  around $95\%$ for  both of the  two methods, after  adding more
-powerful CPU.
 \ \\
-%\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà
-%obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas
-%besoin de déployer sur une archi réelle}
 
 To conclude these series of experiments, with  SimGrid we have been able to make
 many simulations  with many parameters  variations. Doing all  these experiments
-with a real platform is most of  the time not possible. Moreover the behavior of
-both GMRES and  Krylov multisplitting methods is in accordance  with larger real
-executions on large scale supercomputer~\cite{couturier15}.
+with a real platform is most of the time not possible or very costly. Moreover
+the behavior of both GMRES and  Krylov two-stage algorithms is in accordance
+with larger real executions on large scale supercomputers~\cite{couturier15}.
 
 
-\subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode}
+\subsection{Comparison between synchronous GMRES and asynchronous two-stage multisplitting algorithms}
 
 The previous paragraphs  put in evidence the interests to  simulate the behavior
 of  the application  before  any  deployment in  a  real  environment.  In  this
@@ -761,47 +766,38 @@ classical GMRES in \textit{synchronous mode}.
 
 The  interest of  using  an asynchronous  algorithm  is that  there  is no  more
 synchronization. With  geographically distant  clusters, this may  be essential.
-In  this case,  each  processor can  compute its  iteration  freely without  any
+In  this case,  each  processor can  compute its  iterations  freely without  any
 synchronization  with   the  other   processors.  Thus,  the   asynchronous  may
 theoretically reduce  the overall execution  time and can improve  the algorithm
 performance.
 
-In this section,  the Simgrid simulator is  used to compare the  behavior of the
-multisplitting in  asynchronous mode  with GMRES  in synchronous  mode.  Several
-benchmarks have  been performed with  various combination of the  grid resources
-(CPU, Network, input  matrix size, \ldots ). The test  conditions are summarized
-in  Table~\ref{tab:07}. In  order to  compare  the execution  times, this  table
-reports the  relative gain between both  algorithms. It is defined  by the ratio
-between  the   execution  time  of   GMRES  and   the  execution  time   of  the
-multisplitting.  The  ration  is  greater  than  one  because  the  asynchronous
-multisplitting version is faster than GMRES.
+In this section,  the SimGrid simulator is  used to compare the  behavior of the
+two-stage  algorithm  in  asynchronous  mode with  GMRES  in  synchronous  mode.
+Several benchmarks  have been  performed with various  combinations of  the grid
+resources  (CPU,  Network,  matrix  size,   \ldots).  The  test  conditions  are
+summarized in Table~\ref{tab:02}.
+
+
 
+%\LZK{Quelle table repporte les gains relatifs?? Sûrement pas Table II !!}
+%\RCE{Table III avec la nouvelle numerotation}
 
 
-\begin{table} [htbp]
+\begin{table}[htbp]
 \centering
-\begin{tabular}{r c }
+\begin{tabular}{ll}
  \hline
- Grid Architecture & 2 $\times$ 50 totaling 100 processors\\ %\hline
- Processors Power & 1 GFlops to 1.5 GFlops\\
-   Intra-Network & bw=1.25 Gbits - lat=5.10$^{-5}$ \\ %\hline
-   Inter-Network & bw=5 Mbits - lat=2.10$^{-2}$\\
- Input matrix size & $N_{x}$ = From 62 to 150\\ %\hline
- Residual error precision & 10$^{-5}$ to 10$^{-9}$\\ \hline \\
+ Grid architecture                       & 2$\times$50 totaling 100 processors\\
+ Processors Power                        & 1 GFlops to 1.5 GFlops \\
+ \multirow{2}{*}{Network inter-clusters} & $bw$=1.25 Gbits, $lat=50\mu$s \\
+                                         & $bw$=5 Mbits, $lat=20ms$\\
+ Matrix size                             & from $62^3$ to $150^3$\\
+ Residual error precision                & $10^{-5}$ to $10^{-9}$\\ \hline \\
  \end{tabular}
-\caption{Test conditions: GMRES in synchronous mode vs Krylov Multisplitting in asynchronous mode}
-\label{tab:07}
+\caption{Test conditions: GMRES in synchronous mode vs. Krylov two-stage in asynchronous mode}
+\label{tab:02}
 \end{table}
 
-Again,  comprehensive and  extensive tests  have been  conducted with  different
-parameters as  the CPU power, the  network parameters (bandwidth and  latency)
-and with different problem size. The  relative gains greater than $1$  between the
-two algorithms have  been captured after  each step  of the test.   In
-Table~\ref{tab:08}  are  reported the  best  grid  configurations allowing
-the  multisplitting method to  be more than  $2.5$ times faster  than the
-classical  GMRES.  These  experiments also  show the  relative tolerance  of the
-multisplitting algorithm when using a low speed network as usually observed with
-geographically distant clusters through the internet.
 
 % use the same column width for the following three tables
 \newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
@@ -839,15 +835,24 @@ geographically distant clusters through the internet.
     \hline
   \end{mytable}
 %\end{table}
- \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES}
- \label{tab:08}
+ \caption{Relative gains of the two-stage multisplitting algorithm compared with the classical GMRES}
+ \label{tab:03}
 \end{table}
 
 
-\section{Conclusion}
+Table~\ref{tab:03} reports  the relative gains  between both algorithms.   It is
+defined by the ratio between the execution  time of GMRES and the execution time
+of the  multisplitting. The ratio is  greater than one because  the asynchronous
+multisplitting  version  is  faster  than   GMRES.  In  average,  the  two-stage
+multisplitting algorithm to  be more than $2.5$ times faster  than the classical
+GMRES.  These experiments also show the relative tolerance of the multisplitting
+algorithm when using a low speed network as usually observed with geographically
+distant clusters through the internet.
 
+
+\section{Conclusion}
 In this paper we have presented the simulation of the execution of three
-different parallel solvers on some multi-core architectures. We have show that
+different parallel solvers on some multi-core architectures. We have shown that
 the SimGrid toolkit is an interesting simulation tool that has allowed us to
 determine  which method  to choose  given a  specified multi-core  architecture.
 Moreover the simulated results are in accordance (i.e. with the same order of
@@ -869,7 +874,7 @@ converge and so to very different execution times.
 In future works, we  plan to investigate how to simulate  the behavior of really
 large scale  applications. For  example, if  we are  interested to  simulate the
 execution of the solvers of this paper with thousand or even dozens of thousands
-or core,  it is not possible  to do that with  SimGrid. In fact, this  tool will
+of cores,  it is not possible  to do that with  SimGrid. In fact, this  tool will
 make the real computation. So we plan to focus our research on that problematic.