+The choice of SimGrid/SMPI as a simulator tool in this study has been emphasized by the results obtained by several studies to validate, in the real environments, the behavior of different network models simulated in SimGrid~\cite{velho+schnorr+casanova+al.2013.validity}. Other studies underline the comparison between the real MPI application executions and the SimGrid/SMPI ones~\cite{guermouche+renard.2010.first,clauss+stillwell+genaud+al.2011.single,bedaride+degomme+genaud+al.2013.toward}. These works show the accuracy of SimGrid simulations compared to the executions on real physical architectures.
+
+
+
+
+
+
+
+
+
+
+
+
+
+%% In the scope of this paper, the SimGrid toolkit~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile},
+%% an open source framework actively developed by its scientific community, has been chosen to simulate the behavior of iterative linear solvers in different computational grid configurations. SimGrid pretends to be non-specialized in opposite to some other simulators which stayed to be very specific oriented-application. One of the well-known SimGrid advantage is its SMPI (Simulated MPI) user interface. SMPI purpose is to execute by simulation in a similar way as in real life, an MPI distributed application and to get accurate results with the detailed resources
+%% consumption.Several studies have demonstrated the accuracy of the simulation
+%% compared with execution on real physical architectures. In addition of SMPI,
+%% Simgrid provides other API which can be convienent for different distrbuted
+%% applications: computational grid applications, High Performance Computing (HPC),
+%% P2P but also clouds applications. In this paper we use the SMPI API. It
+%% implements about \np[\%]{80} of the MPI 2.0 standard and allows minor
+%% modifications of the initial code~\cite{bedaride+degomme+genaud+al.2013.toward}
+%% (see Section~\ref{sec:04.02}).
+
+
+%% Provided as an input to the simulator, at least $3$ XML files describe the
+%% computational grid resources: number of clusters in the grid, number of
+%% processors/cores in each cluster, detailed description of the intra and inter
+%% networks and the list of the hosts in each cluster (see the details in Section~\ref{sec:expe}). Simgrid uses a fluid model to simulate the program execution.
+%% This gives several simulation modes which produce accurate
+%% results~\cite{bedaride+degomme+genaud+al.2013.toward,
+%% velho+schnorr+casanova+al.2013.validity}. For instance, the "in vivo" mode
+%% really executes the computation but "intercepts" the communications (running
+%% time is then evaluated according to the parameters of the simulated platform).
+%% It is also possible for SimGrid/SMPI to only keep duration of large
+%% computations by skipping them. Moreover the application can be run "in vitro"
+%% by sharing some in-memory structures between the simulated processes and
+%% thus allowing the use of very large data scale.
+
+
+%% The choice of Simgrid/SMPI as a simulator tool in this study has been emphasized
+%% by the results obtained by several studies to validate, in real environments,
+%% the behavior of different network models simulated in
+%% Simgrid~\cite{velho+schnorr+casanova+al.2013.validity}. Other studies underline
+%% the comparison between real MPI executions and SimGrid/SMPI
+%% ones\cite{guermouche+renard.2010.first, clauss+stillwell+genaud+al.2011.single,
+%% bedaride+degomme+genaud+al.2013.toward}. These works show the accuracy of
+%% SimGrid simulations.
+
+
+
+
+
+
+% SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} is a discrete event simulation framework to study the behavior of large-scale distributed computing platforms as Grids, Peer-to-Peer systems, Clouds and High Performance Computation systems. It is widely used to simulate and evaluate heuristics, prototype applications or even assess legacy MPI applications. It is still actively developed by the scientific community and distributed as an open source software.
+%
+% %%%%%%%%%%%%%%%%%%%%%%%%%
+% % SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile}
+% % is a simulation framework to study the behavior of large-scale distributed
+% % systems. As its name suggests, it emanates from the grid computing community,
+% % but is nowadays used to study grids, clouds, HPC or peer-to-peer systems. The
+% % early versions of SimGrid date back from 1999, but it is still actively
+% % developed and distributed as an open source software. Today, it is one of the
+% % major generic tools in the field of simulation for large-scale distributed
+% % systems.
+%
+% SimGrid provides several programming interfaces: MSG to simulate Concurrent
+% Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to
+% run real applications written in MPI~\cite{MPI}. Apart from the native C
+% interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming
+% languages. SMPI is the interface that has been used for the work described in
+% this paper. The SMPI interface implements about \np[\%]{80} of the MPI 2.0
+% standard~\cite{bedaride+degomme+genaud+al.2013.toward}, and supports
+% applications written in C or Fortran, with little or no modifications (cf Section IV - paragraph B).
+%
+% Within SimGrid, the execution of a distributed application is simulated by a
+% single process. The application code is really executed, but some operations,
+% like communications, are intercepted, and their running time is computed
+% according to the characteristics of the simulated execution platform. The
+% description of this target platform is given as an input for the execution, by
+% means of an XML file. It describes the properties of the platform, such as
+% the computing nodes with their computing power, the interconnection links with
+% their bandwidth and latency, and the routing strategy. The scheduling of the
+% simulated processes, as well as the simulated running time of the application
+% are computed according to these properties.
+%
+% To compute the durations of the operations in the simulated world, and to take
+% into account resource sharing (e.g. bandwidth sharing between competing
+% communications), SimGrid uses a fluid model. This allows users to run relatively fast
+% simulations, while still keeping accurate
+% results~\cite{bedaride+degomme+genaud+al.2013.toward,
+% velho+schnorr+casanova+al.2013.validity}. Moreover, depending on the
+% simulated application, SimGrid/SMPI allows to skip long lasting computations and
+% to only take their duration into account. When the real computations cannot be
+% skipped, but the results are unimportant for the simulation results, it is
+% also possible to share dynamically allocated data structures between
+% several simulated processes, and thus to reduce the whole memory consumption.
+% These two techniques can help to run simulations on a very large scale.
+%
+% The validity of simulations with SimGrid has been asserted by several studies.
+% See, for example, \cite{velho+schnorr+casanova+al.2013.validity} and articles
+% referenced therein for the validity of the network models. Comparisons between
+% real execution of MPI applications on the one hand, and their simulation with
+% SMPI on the other hand, are presented in~\cite{guermouche+renard.2010.first,
+% clauss+stillwell+genaud+al.2011.single,
+% bedaride+degomme+genaud+al.2013.toward}. All these works conclude that
+% SimGrid is able to simulate pretty accurately the real behavior of the
+% applications.
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{Two-stage multisplitting methods}
+\label{sec:04}
+\subsection{Synchronous and asynchronous two-stage methods for sparse linear systems}
+\label{sec:04.01}
+In this paper we focus on two-stage multisplitting methods in their both versions (synchronous and asynchronous)~\cite{Frommer92,Szyld92,Bru95}. These iterative methods are based on multisplitting methods~\cite{O'leary85,White86,Alefeld97} and use two nested iterations: the outer iteration and the inner iteration. Let us consider the following sparse linear system of $n$ equations in $\mathbb{R}$:
+\begin{equation}
+Ax=b,
+\label{eq:01}
+\end{equation}
+where $A$ is a sparse square and nonsingular matrix, $b$ is the right-hand side and $x$ is the solution of the system. Our work in this paper is restricted to the block Jacobi splitting method. This approach of multisplitting consists in partitioning the matrix $A$ into $L$ horizontal band matrices of order $\frac{n}{L}\times n$ without overlapping (i.e. sub-vectors $\{x_\ell\}_{1\leq\ell\leq L}$ are disjoint). Two-stage multisplitting methods solve the linear system~(\ref{eq:01}) iteratively as follows:
+\begin{equation}
+x_\ell^{k+1} = A_{\ell\ell}^{-1}(b_\ell - \displaystyle\sum^{L}_{\substack{m=1\\m\neq\ell}}{A_{\ell m}x^k_m}),\mbox{~for~}\ell=1,\ldots,L\mbox{~and~}k=1,2,3,\ldots
+\label{eq:02}
+\end{equation}
+where $x_\ell$ are sub-vectors of the solution $x$, $b_\ell$ are the sub-vectors of the right-hand side $b$, and $A_{\ell\ell}$ and $A_{\ell m}$ are diagonal and off-diagonal blocks of matrix $A$ respectively. The iterations of these methods can naturally be computed in parallel such that each processor or cluster of processors is responsible for solving one splitting as a linear sub-system:
+\begin{equation}
+A_{\ell\ell} x_\ell = c_\ell,\mbox{~for~}\ell=1,\ldots,L,
+\label{eq:03}
+\end{equation}
+where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}.
+
+\begin{figure}[htpb]
+%\begin{algorithm}[t]
+%\caption{Block Jacobi two-stage multisplitting method}
+\begin{algorithmic}[1]
+ \Input $A_\ell$ (sparse matrix), $b_\ell$ (right-hand side)
+ \Output $x_\ell$ (solution vector)\vspace{0.2cm}
+ \State Set the initial guess $x^0$
+ \For {$k=1,2,3,\ldots$ until convergence}
+ \State $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m^{k-1}$
+ \State $x^k_\ell=Solve_{gmres}(A_{\ell\ell},c_\ell,x^{k-1}_\ell,\MIG,\TOLG)$\label{solve}
+ \State Send $x_\ell^k$ to neighboring clusters\label{send}
+ \State Receive $\{x_m^k\}_{m\neq\ell}$ from neighboring clusters\label{recv}
+ \EndFor
+\end{algorithmic}
+\caption{Block Jacobi two-stage multisplitting method}
+\label{alg:01}
+%\end{algorithm}
+\end{figure}