]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Modifs dans section 4
[rce2015.git] / paper.tex
index c4c39393aeefed46eabaa715b5271a533557d8ad..efbda8abecc21ae9c8ba61374eb87746419f44ef 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 %% execution time. 
 %% The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the synchronous GMRES algorithm.
 
-
 The behavior of multi-core applications is always a challenge to predict, especially with a new architecture for which no experiment has been performed. With some applications, it is difficult, if not impossible, to build accurate performance models. That is why another solution is to use a simulation tool which allows us to change many parameters of the architecture (network bandwidth, latency, number of processors) and to simulate the execution of such applications. 
 
-In this paper we focus on the simulation of iterative algorithms to solve sparse linear systems. We study the behavior of the GMRES algorithm and two different variants of the Multisplitting algorithms: using synchronous or asynchronous iterations. For each algorithm we have simulated different architecture parameters to evaluate their influence on the overall execution time. The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the GMRES algorithm.
+In this paper we focus on the simulation of iterative algorithms to solve sparse linear systems. We study the behavior of the GMRES algorithm and two different variants of the multisplitting algorithms: using synchronous or asynchronous iterations. For each algorithm we have simulated different architecture parameters to evaluate their influence on the overall execution time. The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous multisplitting algorithm on distant clusters compared to the GMRES algorithm.
+
 \end{abstract}
 
 %\keywords{Algorithm; distributed; iterative; asynchronous; simulation; simgrid;
@@ -149,10 +149,10 @@ task cannot begin a new iteration while it has not received data dependencies
 from its neighbors. We say that the iteration computation follows a
 \textit{synchronous} scheme. In the asynchronous scheme a task can compute a new
 iteration without having to wait for the data dependencies coming from its
-neighbors. Both communication and computations are \textit{asynchronous}
+neighbors. Both communications and computations are \textit{asynchronous}
 inducing that there is no more idle time, due to synchronizations, between two
 iterations~\cite{bcvc06:ij}. This model presents some advantages and drawbacks
-that we detail in section~\ref{sec:asynchro} but even if the number of
+that we detail in Section~\ref{sec:asynchro} but even if the number of
 iterations required to converge is generally  greater  than for the synchronous
 case, it appears that the asynchronous  iterative scheme  can significantly
 reduce  overall execution times by  suppressing idle  times due to
@@ -165,7 +165,7 @@ allocations policies under  varying CPU power, network speeds and  loads is very
 challenging and  labor intensive~\cite{Calheiros:2011:CTM:1951445.1951450}. This
 problematic is  even more difficult  for the  asynchronous scheme where  a small
 parameter variation of the execution platform and of the application data can
-lead to very different numbers of iterations to reach the converge and so to
+lead to very different numbers of iterations to reach the convergence and so to
 very different execution times. In this challenging context we think that the
 use of a simulation tool can greatly leverage the possibility of testing various
 platform scenarios.
@@ -173,16 +173,16 @@ platform scenarios.
 The  {\bf main  contribution  of  this paper}  is  to show  that  the  use of  a
 simulation tool (i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real
 parallel applications (i.e. large linear  system solvers) can help developers to
-better tune their  application for a given multi-core architecture.  To show the
+better tune their  applications for a given multi-core architecture.  To show the
 validity of this approach we first compare the simulated execution of the Krylov
-multisplitting  algorithm   with  the   GMRES  (Generalized   Minimal  Residual)
+multisplitting  algorithm   with  the   GMRES  (Generalized   Minimal  RESidual)
 solver~\cite{saad86} in  synchronous mode.  The simulation  results allow  us to
-determine  which method  to choose  given a  specified multi-core  architecture.
+determine  which method  to choose  for a given multi-core  architecture.
 Moreover the  obtained results  on different simulated  multi-core architectures
 confirm the  real results  previously obtained  on non  simulated architectures.
 More precisely the simulated results are in accordance (i.e. with the same order
 of magnitude)  with the works  presented in~\cite{couturier15}, which  show that
-the synchronous  multisplitting method  is more efficient  than GMRES  for large
+the synchronous  Krylov multisplitting method  is more efficient  than GMRES  for large
 scale  clusters.   Simulated   results  also  confirm  the   efficiency  of  the
 asynchronous  multisplitting   algorithm  compared  to  the   synchronous  GMRES
 especially in case of geographically distant clusters.
@@ -195,20 +195,20 @@ asynchronous iterative application.
 
 This paper is organized as follows. Section~\ref{sec:asynchro} presents the
 iteration model we use and more particularly the asynchronous scheme.  In
-section~\ref{sec:simgrid} the SimGrid simulation toolkit is presented.
+Section~\ref{sec:simgrid} the SimGrid simulation toolkit is presented.
 Section~\ref{sec:04} details the different solvers that we use.  Finally our
-experimental results are presented in section~\ref{sec:expe} followed by some
+experimental results are presented in Section~\ref{sec:expe} followed by some
 concluding remarks and perspectives.
 
 
 \section{The asynchronous iteration model and the motivations of our work}
 \label{sec:asynchro}
 
-Asynchronous iterative methods have been  studied for many years theoritecally and
+Asynchronous iterative methods have been  studied for many years theoretically and
 practically. Many methods have been considered and convergence results have been
 proved. These  methods can  be used  to solve, in  parallel, fixed  point problems
 (i.e. problems  for which  the solution is  $x^\star =f(x^\star)$.  In practice,
-asynchronous iterations  methods can be used  to solve, for example,  linear and
+asynchronous iteration  methods can be used  to solve, for example,  linear and
 non-linear systems of equations or optimization problems, interested readers are
 invited to read~\cite{BT89,bahi07}.
 
@@ -218,7 +218,7 @@ algorithm that supports both the synchronous or the asynchronous iteration model
 requires very few modifications  to be able to be executed  in both variants. In
 practice, only  the communications and  convergence detection are  different. In
 the synchronous  mode, iterations are  synchronized whereas in  the asynchronous
-one, they are not.  It should be noticed that non blocking communications can be
+one, they are not.  It should be noticed that non-blocking communications can be
 used in both  modes. Concerning the convergence  detection, synchronous variants
 can use  a global convergence procedure  which acts as a  global synchronization
 point. In the  asynchronous model, the convergence detection is  more tricky as
@@ -226,17 +226,17 @@ it   must  not   synchronize  all   the  processors.   Interested  readers   can
 consult~\cite{myBCCV05c,bahi07,ccl09:ij}.
 
 The number of iterations required to reach the convergence is generally greater
-for the asynchronous scheme (this number depends depends on  the delay of the
+for the asynchronous scheme (this number depends on  the delay of the
 messages). Note that, it is not the case in the synchronous mode where the
 number of iterations is the same than in the sequential mode. In this way, the
 set of the parameters  of the  platform (number  of nodes,  power of nodes,
-inter and  intra clusters  bandwidth  and  latency, \ldots) and  of  the
+inter and  intra clusters  bandwidth  and  latency,~\ldots) and  of  the
 application can drastically change the number of iterations required to get the
 convergence. It follows that asynchronous iterative algorithms are difficult to
 optimize since the financial and deployment costs on large scale multi-core
-architecture are often very important. So, prior to delpoyment and tests it
+architectures are often very important. So, prior to deployment and tests it
 seems very promising to be able to simulate the behavior of asynchronous
-iterative algorithms. The problematic is then to show that the results produce
+iterative algorithms. The problematic is then to show that the results produced
 by simulation are in accordance with reality i.e. of the same order of
 magnitude. To our knowledge, there is no study on this problematic.
 
@@ -317,7 +317,7 @@ where $x_\ell$ are sub-vectors of the solution $x$, $b_\ell$ are the sub-vectors
 A_{\ell\ell} x_\ell = c_\ell,\mbox{~for~}\ell=1,\ldots,L,
 \label{eq:03}
 \end{equation}
-where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES ({\it Generalized Minimal RESidual})~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}.
+where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}.
 
 \begin{figure}[t]
 %\begin{algorithm}[t]
@@ -386,26 +386,20 @@ The algorithm in Figure~\ref{alg:02} includes the procedure of the residual mini
 \subsection{Simulation of the two-stage methods using SimGrid toolkit}
 \label{sec:04.02}
 
-One of our objectives when simulating the  application in Simgrid is, as in real
+One of our objectives when simulating the  application in SimGrid is, as in real
 life, to  get accurate results  (solutions of the  problem) but also to ensure the
 test reproducibility  under the same  conditions.  According to  our experience,
-very  few modifications  are required  to adapt  a MPI  program for  the Simgrid
+very  few modifications  are required  to adapt  a MPI  program for  the SimGrid
 simulator using SMPI (Simulator MPI). The  first modification is to include SMPI
-libraries  and related  header files  (smpi.h).  The  second modification  is to
+libraries  and related  header files  (\verb+smpi.h+).  The  second modification  is to
 suppress all global variables by replacing  them with local variables or using a
-Simgrid      selector       called      "runtime       automatic      switching"
+SimGrid selector       called      "runtime       automatic      switching"
 (smpi/privatize\_global\_variables). Indeed, global  variables can generate side
 effects on runtime between the threads running in the same process and generated by
-Simgrid  to simulate the  grid environment.
-
-%\RC{On vire cette  phrase ?} \RCE {Si c'est la phrase d'avant sur les threads, je pense qu'on peut la retenir car c'est l'explication du pourquoi Simgrid n'aime pas les variables globales. Si c'est pas bien dit, on peut la reformuler. Si c'est la phrase ci-apres, effectivement, on peut la virer si elle preterais a discussion}The
-%last modification on the  MPI program pointed out for some  cases, the review of
-%the sequence of  the MPI\_Isend, MPI\_Irecv and  MPI\_Waitall instructions which
-%might cause an infinite loop.
-
+SimGrid  to simulate the  grid environment.
 
-\paragraph{Simgrid Simulator parameters}
-\  \\ \noindent  Before running  a Simgrid  benchmark, many  parameters for  the
+\paragraph{Parameters of the simulation in SimGrid}
+\  \\ \noindent  Before running  a SimGrid  benchmark, many  parameters for  the
 computation platform must be defined. For our experiments, we consider platforms
 in which  several clusters are  geographically distant,  so there are  intra and
 inter-cluster communications. In the following, these parameters are described:
@@ -413,10 +407,10 @@ inter-cluster communications. In the following, these parameters are described:
 \begin{itemize}
        \item hostfile: hosts description file.
        \item platform: file describing the platform architecture: clusters (CPU power,
-\dots{}), intra cluster network description, inter cluster network (bandwidth bw,
-latency lat, \dots{}).
+\dots{}), intra cluster network description, inter cluster network (bandwidth $bw$,
+latency $lat$, \dots{}).
        \item archi   : grid computational description (number of clusters, number of
-nodes/processors for each cluster).
+nodes/processors in each cluster).
 \end{itemize}
 \noindent
 In addition, the following arguments are given to the programs at runtime:
@@ -424,8 +418,8 @@ In addition, the following arguments are given to the programs at runtime:
 \begin{itemize}
        \item maximum number of inner iterations $\MIG$ and outer iterations $\MIM$,
        \item inner precision $\TOLG$ and outer precision $\TOLM$,
-       \item matrix sizes of the 3D Poisson problem: N$_{x}$, N$_{y}$ and N$_{z}$ on axis $x$, $y$ and $z$ respectively,
-       \item matrix diagonal value is fixed to $6.0$ for synchronous Krylov multisplitting experiments and $6.2$ for asynchronous block Jacobi experiments,
+       \item matrix sizes of the problem: N$_{x}$, N$_{y}$ and N$_{z}$ on axis $x$, $y$ and $z$ respectively (in our experiments, we solve 3D problem, see Section~\ref{3dpoisson}),
+       \item matrix diagonal value is fixed to $6.0$ for synchronous experiments and $6.2$ for asynchronous ones,
        \item matrix off-diagonal value is fixed to $-1.0$,
        \item number of vectors in matrix $S$ (i.e. value of $s$),
        \item maximum number of iterations $\MIC$ and precision $\TOLC$ for CGLS method,
@@ -434,7 +428,7 @@ In addition, the following arguments are given to the programs at runtime:
        \item execution mode: synchronous or asynchronous.
 \end{itemize}
 
-It should also be noticed that both solvers have been executed with the Simgrid selector \texttt{-cfg=smpi/running\_power} which determines the computational power (here 19GFlops) of the simulator host machine.
+It should also be noticed that both solvers have been executed with the SimGrid selector \texttt{-cfg=smpi/running\_power} which determines the computational power (here 19GFlops) of the simulator host machine.
 
 %%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%
@@ -445,6 +439,7 @@ It should also be noticed that both solvers have been executed with the Simgrid
 In this section, experiments for both Multisplitting algorithms are reported. First the 3D Poisson problem used in our experiments is described.
 
 \subsection{The 3D Poisson problem}
+\label{3dpoisson}
 
 
 We use our two-stage algorithms to solve the well-known Poisson problem $\nabla^2\phi=f$~\cite{Polyanin01}. In three-dimensional Cartesian coordinates in $\mathbb{R}^3$, the problem takes the following form: