-
-In this section, we analyze the performance of algorithms running on various
-grid configurations (2x16, 4x8, 4x16 and 8x8). First, the results in Figure~\ref{fig:01}
-show for all grid configurations the non-variation of the number of iterations of
-classical GMRES for a given input matrix size; it is not the case for the
-multisplitting method.
-
-\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
-\RC{Les légendes ne sont pas explicites...}
-
-
-\begin{figure} [ht!]
- \begin{center}
- \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
- \end{center}
- \caption{Various grid configurations with the input matrix size $N_{x}=150$ and $N_{x}=170$\RC{idem}
-\AG{Utiliser le point comme séparateur décimal et non la virgule. Idem dans les autres figures.}}
- \label{fig:01}
-\end{figure}
-
-
-The execution times between the two algorithms is significant with different
-grid architectures, even with the same number of processors (for example, 2x16
-and 4x8). We can observ the low sensitivity of the Krylov multisplitting method
-(compared with the classical GMRES) when scaling up the number of the processors
-in the grid: in average, the GMRES (resp. Multisplitting) algorithm performs
-$40\%$ better (resp. $48\%$) when running from 2x16=32 to 8x8=64 processors. \RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?}
-
-\subsubsection{Running on two different inter-clusters network speeds \\}
-
-\begin{table} [ht!]